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Preface 

The 2008 Biosurveillance and Biosecurity Workshop (BioSecure 2008) was built on 
the success of the two U.S. National Science Foundation-sponsored Biosurveillance 
Workshops. The inaugural 2006 workshop was hosted by the University of Arizona’s 
NSF BioPortal Center. It attracted more than 35 participants from academic institu-
tions, industry, and public health agencies, and achieved its objective of bringing 
together infectious disease informatics (IDI) researchers and practitioners to discuss 
selected topics directly relevant to data sharing and analysis for real-time animal and 
public health surveillance. The 2007 meeting was held in New Brunswick, New Jer-
sey, co-located with the 2007 IEEE International Conference on Intelligence and Se-
curity Informatics, and met with tremendous success. Researchers from a wide range 
of backgrounds, including biosecurity, epidemiology, statistics, applied mathematics, 
information systems, computer science and machine learning/data mining, contributed 
formal papers to the workshop and actively participated in the meeting along with 
practitioners from both government agencies and industry. More than 65 people at-
tended the one-day workshop, representing major research labs across multiple disci-
plines, key industry players, and a range of government entities. 

BioSecure 2008 continued this workshop series aiming to achieve the following 
objectives: (a) review and examine various informatics approaches for health surveil-
lance and biosecurity from both technological and policy perspectives; and (b) discuss 
and compare various systems approaches and algorithms of relevance to biosurveil-
lance and biosecurity. The specific emphasis of the 2008 meeting was to encourage 
information and computer science (including informatics, statistics, modeling and 
decision sciences, data management, and IT) researchers to join the public health 
surveillance and biosecurity community to conduct high-impact and innovative 
research.  

We are pleased to have received many outstanding contributions from IDI research 
groups and practitioners from around the world. The one-day program included one 
invited presentation, 18 papers, and an all-inclusive poster session. 

BioSecure 2008 was jointly hosted by the University of Arizona, the U.S. Centers 
for Disease Control and Prevention, and the University of Washington. We wish to 
express our gratitude to all workshop Program Committee members, who provided 
high-quality, timely, valuable and constructive review comments. In addition, we 
sincerely appreciate the efforts by our Government Liaisons, Sylvia Spengler from 
U.S. National Science Foundation, Donald Noah, U.S. Department of Homeland Se-
curity, and Daniel M. Sosin, U.S. Centers for Disease Control and Prevention, to 
broaden workshop participation from related academic and practitioner communities. 
We also would like to thank Catherine A. Larson, and several members of the Artifi-
cial Intelligence Laboratory and the Intelligent Systems and Decisions Laboratory at 
the University of Arizona for their excellent support.   
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VI 

BioSecure 2008 was held as part of the pre-conference workshop series at the In-
ternational Society for Disease Surveillance (ISDS) Seventh Annual Conference. We 
wish to thank the ISDS society officers, meeting organizers, and support staff for their 
cooperation and assistance. We also wish to acknowledge the Springer LNCS editorial 
and production staff for their professionalism and continued support for intelligence 
and security informatics, IDI, and related events. Our sincere gratitude goes to the 
U.S. National Science Foundation as the main sponsor.  
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Test Power for Drug Abuse Surveillance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Jarad Niemi, Meredith Smith, and David Banks

Model Assessment and Case Studies

Assessing the Accuracy of Spatiotemporal Epidemiological Models . . . . . 143
James H. Kaufman, Joanna L. Conant, Daniel A. Ford,
Wakana Kirihata, Barbara Jones, and Judith V. Douglas

Simulation of Multivariate Spatial-Temporal Outbreak Data for
Detection Algorithm Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Min Zhang, Xiaohui Kong, and Garrick L. Wallstrom

Analysis and Prediction of Epidemiological Trend of Scarlet Fever from
1957 to 2004 in the Downtown Area of Beijing . . . . . . . . . . . . . . . . . . . . . . . 164

Yanhui Shen, Chu Jiang, and Zhe Dun

Environmental Biosurveillance and Case Studies

Environmental Biosurveillance for Epidemic Prediction: Experience
with Rift Valley Fever . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Jean-Paul Chretien, Assaf Anyamba, Jennifer Small,
Compton J. Tucker, Seth C. Britch, and Kenneth J. Linthicum

Spatial Regression-Based Environmental Analysis in Infectious Disease
Informatics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

Daniel D. Zeng, Ping Yan, and Su Li

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183



D. Zeng et al. (Eds.): BioSecure 2008, LNCS 5354, pp. 1–9, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Public Health Information Fusion for  
Situation Awareness 

Henry Rolka, Jean C. O’Connor, and David Walker 

Office of Critical Information Integration and Exchange, National Center for Zoonotic,  
Vector-Borne and Enteric Diseases, Centers for Disease Control and Prevention, Atlanta, GA 

{Henry Rolka,Jean O‘Connor,David Walker,LNCS}@Springer.com 

Abstract. Recent events, including the terrorist attacks in the fall of 2001, the 
spread of Severe Acute Respiratory Syndrome (SARS), and Hurricane Katrina, 
highlight the need for real-time information exchange to enhance government’s 
awareness and understanding of public health events in order to detect and 
respond as those events unfold. This paper describes the planned approach of 
the Centers for Disease Control and Prevention (CDC)’s Office of Critical 
Information Integration and Exchange (OCIIX) in meeting that need through 
the programmatic area known as BioPHusion—the identification of critical 
information requirements (CIRs) and the operationalization of real-time public 
health information fusion and leadership decision-support activities. Drawing 
from methodologies for situation awareness used in other domains, we outline 
the framework being used for the implementation of BioPHusion, including the 
formalization of information exchange partnerships, systematic information 
source acquisition, policy development, analysis, research, threat assessments 
and situational awareness report production. We propose that the framework 
can be applied to the development of real-time information exchange for 
situation awareness in other public health practice settings, such as state and 
local government. And, we suggest that the framework can be used to explore 
the possibilities around sharing critical information with other components of 
government involved in the detection of, and response to, public health 
emergencies.       

Keywords: Fusion, public health, bioterrorism, situation awareness. 

1   The Need for Real Time Information Exchange in Public Health 
Practice 

A series of public health emergencies over the last 8 years, including the terrorist 
attacks in the fall of 2001, the spread of Severe Acute Respiratory Syndrome (SARS) 
and Hurricane Katrina, have highlighted the need for real-time information exchange 
to enhance government’s awareness and understanding of public health events in 
order for government to prevent or respond to situations as they unfold.  However, 
because the responsibility for public health is shared across levels of government, 
professional practice and scientific disciplines, the timely sharing of multi-sector, all-
hazards, information sharing both is essential and incredibly challenging.   
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Public health situation awareness is needed by public health leaders in three 
different types of settings that can occur simultaneously or in sequence: 1) pre-
event/threat situations where a wide range of public health events and threats are 
assessed, 2) emergency response situation awareness in which detailed assessments of 
a specific event or threat and the public health responses to that threat are monitored, 
and 3) recovery operations during which the on-going mitigation and preventive 
efforts to a specific event or threat are monitored. Although the techniques for 
performing information integration, analysis, and reporting of public health-relevant 
information are very similar across all three, each of these areas has different staffing 
needs, critical information requirements, and types of output reporting. Pre-event 
threat assessment includes monitoring a wide variety of information sources to 
identify potential public health threats or to track existing threats. This activity 
includes the capture of information, such as media reports, operational reports (i.e. 
emergency operations center daily reports), or subject matter expert notes, into a 
tracking database to allow analysts to compile relevant related information over time.  

When a public health threat reaches outbreak status requiring emergency response 
operations, situation awareness operations, which include monitoring not only the 
spread of disease but also the emergency response preparations, staff and resource 
deployments, and local public health or other federal agency response activities,  
are critical to executive decision-making. To support the federal response to public 
health events, in 2003, CDC formally established the Director’s Emergency Operation 
Center (DEOC) and adapted the Incident Command System (ICS) to meet the unique 
needs of public health-related emergency responses. The ICS, a detailed management 
structure first developed for the coordination of federal, state, and local entities in 
fighting large forest fires and later adapted by the Coast Guard to respond to oil or 
hazardous cargo spills in the nation’s sea ports [1], is now used as a nation-wide 
standard for emergency response coordination under the National Incident 
Management System (NIMS) [2]. CDC’s adapted version, known as the Incident 
Management System (IMS), has been incorporated into CDC’s disease-specific 
emergency operations plans to guide the deployment of CDC personnel and to ensure 
coordinated deployment of other federal support services, such as the distribution of 
vaccine or anti-viral medications from the Strategic National Stockpile. To address 
the complexity of the public health response to any event, one of the ways CDC has 
adapted the ICS for its use was to elevate the Situation Awareness Unit from a sub-
component of the Planning Section to a stand-alone section that receives information 
from across the other components of the ICS and that reports regularly to the federal 
official in charge of the response.  As the event wanes, formal situation awareness 
activities under the IMS stand down and daily situation awareness is transferred back 
to CDC programs. 

Although the need for public health leaders to possess a shared understanding of 
ongoing events in order to facilitate decision making and rapid intervention situation 
awareness is not necessarily new, the need has become more acute with globalization 
and technological developments. And, the need has been formally recognized through 
several recent policy developments. The International Health Regulations (IHR), as 
revised in 2005, represents an international agreement that requires parties to the IHR 
to develop the surveillance capacity to detect, assess and report to the World Health 
Organization certain public health events and conditions [3]. The Pandemic and  
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All-Hazards Preparedness Act (PAHPA), passed in 2006, provides that “the 
Secretary, in collaboration with State, local, and tribal public health officials, shall 
establish a near real-time electronic nationwide public health situational awareness 
capability” [4]. Homeland Security Presidential Directive-21 (HSPD-21), which was 
issued in 2007, provides for collaboration across HHS and other federal agencies to 
establish a plan to develop that capability and sets forth other guiding principles for 
the development of the network, including the need for the network to be flexible, 
timely, and comprehensive; the need for the network to protect individually 
identifiable data; and the need for the systems in the network to incorporate data into 
a nationally shared understanding of current bio-threats and events [5]. 

2   Public Health Information Fusion: The BioPHusion Model 

Recognizing this need for the fusion and sharing of real-time public health 
information, in 2007 and 2008, the Centers for Disease Control and Prevention (CDC) 
established the Office of Critical Information Integration and Exchange (OCIIX). The 
mission of OCIIX is to accumulate and integrate CDC program information and 
disseminate actionable knowledge on emergent public health events using a meta-
analytic approach to ensure all-hazards situation awareness. To accomplish this 
mission, OCIIX is charged with establishing a new public health fusion center or 
program at CDC, known as BioPHusion, to “incorporate information from multiple 
disparate data sources, facilitate the exchange of information across programs, and 
analyze aggregated interpreted data (information) from existing surveillance systems 
in order to enhance agency-wide situational awareness both domestically and 
globally” [6].  

Below, we outline the framework for operationalizing this vision through: 1) the 
development of critical information requirements, 2) systematic information source 
acquisition, 3) the formalization of information exchange partnerships, 4) analysis, 5) 
threat assessments, 6) situational awareness report production, and 7) research and 
policy development.  

2.1   Development of Critical Information Requirements 

Developing situation awareness capacity for public health begins with identifying the 
potential diseases, natural disasters, or hazardous exposures that would constitute a 
public health threat, and determine what the circumstances under which these events 
should be identified, monitored, and reported and at what level of detail they should 
be reported. However, because of the spectrum and large number of factors that could 
affect the public’s health, this is not a straightforward or trivial exercise, and these 
critical information requirements (CIRs) for public health situation awareness must 
cast a wide net and be flexible, increasing in detail as an event unfolds.  

The following high-level CIRs have been established by BioPHusion for its first 
phase of work to develop a daily situation awareness report for key public health 
leaders: 1) public health events or threats worldwide; 2) events that indicate a public 
health event or threat is or may be imminent; 3) threats to CDC staff or resources; and 
4) newsworthy public health events, regardless of validity. For the purposes of 
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BioPHusion’s daily situation awareness report, ‘public health event’ has been broadly 
defined and includes infectious disease outbreaks, particularly those involving 
nationally notifiable diseases, potential bioterrorism agents such as anthrax, smallpox, 
and other “select agents,” and accidental exposures such as toxic spills, and natural 
disasters such as hurricanes and earthquakes. Indications of a potential public health 
event or one’s imminent occurrence if it is not prevented include damage to critical 
infrastructure or systems, such as water treatment facilities or health care facilities as 
well as outbreaks that have the potential to overwhelm the healthcare infrastructure.   

2.2   Systematic Information Source Acquisition 

Ideally, CIRs should guide decisions about the acquisition of information sources that 
will be routinely monitored to achieve situation awareness. Although public health 
fusion can be done as BioPHusion currently operates, with primarily open source and 
publicly available information, such as news media reports, better situation awareness 
will be achieved when those open sources of information are used along with other 
sources of public health information, such as summary information from state-level 
public health surveillance activities and information generated by public health 
investigations of outbreaks of disease. Public health or biosurveillance surveillance 
data are collected by states, local health departments, CDC and other federal agencies 
from a wide range of sources including environmental monitoring systems, animals or 
vector monitoring systems, individuals, laboratories, medical records, administrative 
records, police records, and vital records (e.g., birth and death certificates) [7]. 
Furthermore, these data are collected in a variety of ways (i.e., passive, active, 
sentinel, special systems, and statistical surveillance) and require flexible approaches 
to system design and operating procedures [8].  

Because data from individual surveillance systems can be incomplete, 
underreported, or not timely, a combination of sources are needed to have public 
health situation awareness across the spectrum of diseases and conditions, naturally 
occurring or intentionally caused, that can impact the public’s health [9, 10]. 
However, there is a real need within public health, especially at CDC, to develop the 
evidence base to make the case for improvements to those systems so that they 
facilitate situation awareness.  For example, in the spring of 1993 Milwaukee had a 
large waterborne cryptosporidium outbreak associated with the city’s water supply 
and studies of that event have shown that sales of electrolyte products are good early 
indicators of respiratory and diarrheal diseases in children and could serve as an 
earlier signal of an outbreak than hospital diagnoses [11]. Yet, while new systems and 
sources are attractive, efficiency is also an important developmental consideration in 
public health and the evidence base for enhancements to existing surveillance systems 
also needs to be considered [12].  

2.3   Formalization of Information Exchange Partnerships 

The need for partnerships to achieve broad spectrum subject matter expertise and a 
continuous flow of information from various sources cannot be overemphasized. The 
African proverb “if one wishes to travel fast, travel alone but in order to travel far, 
travel together” is particularly applicable to public health information fusion. 
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Achieving improved situation awareness at CDC through BioPHusion will only work 
with support from stakeholders inside CDC and within the broader public health 
community. Memoranda of agreement or understanding are means by which to 
establish a clear delineation of working relations between organizations. BioPHusion 
has memoranda in development with other CDC programs, such as the Director’s 
Emergency Operations Center and the Global Disease Detection Program, as well as 
other federal agencies that possess key public health-related data, such as the US 
Department of Agriculture. Informal communications and social networks based on 
individual relationships can be an important complement to formal lines of 
communication. Current BioPHusion staff have decades of collective experience at 
CDC and with states, local governments, non-governmental organizations, and 
international organizations, such as the World Health Organization. The ideal 
successful situational awareness network is a hybrid of the informal community ‘grass 
roots’ type of information exchange within a formal trans-organizational reporting 
framework.  

2.4   Analysis and Fusion 

The types of analysis and fusion conducted in a BioPHusion-type center must reflect 
the three types of situation awareness needed—pre-event threat situation awareness, 
emergency or event situation awareness, and event-recovery situation awareness. All 
three types, but especially pre-event threat analysis and fusion, require that not 
only must potential health threats be identified and monitored, but analyses and 
assessments need to be made of the potential threat to at-risk populations, projections 
made of potential disease spread, and predictions made about the containment or 
mitigation capacity of public health responses.  Real-time fusion is different from, but 
incorporates, traditional public health meta-analysis. In meta-analysis, combining 
information is typically thought of with respect to procedures that are intensive over a 
longer time frame (i.e. weeks, months, or years) than is the case in public health 
fusion where assessments may be needed in minutes or hours. Meta analysis involves 
a comprehensive review of the literature and statistical approaches to combine 
quantitative measures for an aggregate, evidence-weighted conclusion. Public health 
information fusion for situational awareness involves analogous approaches in a 
compressed time frame that takes into account both quantitative and qualitative 
information. It also involves a qualitative research technique known as content 
analysis, in which the meaning of narratives or groups of narratives is abstracted and 
themes or meanings are assigned. While reviewing and abstracting all of the many 
sources of information needed to analyze and identify threats in a compressed 
timeframe can be challenging, a fully operational situation awareness program should 
have documentation of logic models, interpretative processes, and analytical 
techniques in hand to conduct its work.  

2.5   Public Health Threat Assessment 

Once potential public health events are identified for situation awareness monitoring, 
there are a variety of additional information sources and analytical services that are 
necessary to provide a more complete assessment of whether the event is a true health 
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threat and whether the threat could have severe implications for health if not 
addressed. Threat assessment begins with documentation of what has been observed, 
verified or not verified, the importance or irrelevance of information pieces and most 
importantly, an ongoing dialogue among analysts who may or may not be physically 
collocated. Wiki or similar technology that draws on the potential of social networks 
to analyze and understand a problem can be utilized to generate and maintain some of 
these resource documents [13]. As analysts perform the work, refine analytical skills, 
obtain new information sources, and develop deeper understanding of nuances of 
information sources, it is envisioned that they will continuously update this resource 
knowledge base to accumulate information from which to assess events and threats 
for their need to be reported.  

Specifically, in the BioPHusion model, analysts continuously update the following: 
1) situation awareness standard operating procedures or procedures and processes  
the analysts use to perform daily duties, logic models for decision making, and 
procedures for activating situation awareness in emergency response; 2) disease 
characteristics or descriptions of disease processes to support threat assessment, and 
store information on previous situation awareness assessments of specific threats; 3) 
information source documentation or description of routine information sources, 
including known limitations, information lag times, and subject matter expert 
contacts; and, 4) analytical techniques or processes for performing public health risk 
assessment, developing advanced disease spread or plume modeling, and creation of 
advanced GIS information display capacities. These are critical knowledge base areas 
for the rapid production of threat assessments.  

2.6   Situation Awareness Report Production 

One of the most critical functions of a situation awareness activity is the report 
production.  Fused and analyzed public health data is of little value if it cannot be 
accessed and used by public health decision makers to inform a public health 
response, whether that response is physically placing public health professionals in 
the field, distributing health messages, teaming with partners in the healthcare or non-
profit sectors to deliver services, researching the cause of the event, or developing 
new policies to minimize the potential of similar future events.  Multiple types of 
information products for different types of public health decision makers may be 
appropriate. BioPHusion is currently developing public health situation awareness 
reports for the CDC director, program leadership and selected external partners.  In 
the future, an aim of the BioPHusion program is to develop tools that enable social 
networking and the creation of on-line communities of public health practitioners to 
both collect information as well as disseminate situation awareness reports. 

2.7   Research and Policy Development 

Given the rapidly evolving nature of the information fusion process in public health, 
each of the components of the BioPHusion model reflected in this paper also  
have extensive research and policy development needs. The critical information 
requirements of public health leaders need further exploration. Whether large or 
small, different public health agencies are usually led by a team, rather than a single 
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individual.  Each member of the team may have different skill sets and perspectives; 
key informant interviews and evaluation approaches can help to identify the true 
critical information requirements of the intended audience for public health situation 
awareness reports.  Research into the social networks of the public health community 
could inform the development of information exchange partnerships as well as 
approaches to enhancing disease surveillance.  There are many statistical, content 
analysis, information management, and epidemiologic questions that need to be 
answered in order to do fusion for situation awareness and threat assessment well. 
Producing effective reports requires further research into how public health decision-
makers take in and understand information and use it to make decisions.  Public 
health situation awareness also requires addressing policy barriers to information 
exchange, exploring the appropriate balance between sharing public health 
information and protecting the privacy interests and rights of those affected by the 
information, and facilitating the development of policies and programs that promote 
that appropriate balance of information sharing and situation awareness.   

3   Implications for Other Public Health Practice Settings  

BioPHusion seeks to align the unique information repositories within CDC with the 
public health information gathering that occurs at state and local public health 
departments by: 1) developing a public health situation awareness report that will be 
delivered to the CDC director, program leadership and select external partners; 2) 
developing tools that enable social networking and the creation of on-line 
communities of public health practitioners; and, 3) expanding programming and 
application development support to program areas within CDC for information 
exchange with existing surveillance systems. We suggest that a BioPHusion-type 
model can be applied to the development of real-time information exchange for 
situation awareness in other public health practice settings, such as state and local 
government.  

We also propose that this framework can be used domestically by public health 
practitioners to evaluate the possibility of sharing some or certain critical information 
with other components of government involved in the response to public health 
emergencies. The National Strategy for Information Sharing describes the 
background, current environment, guiding principles and foundational elements for 
exchanging needed information to detect and prevent terrorism [14]. The Departments 
of Justice and Homeland Security have developed an extensive national program for 
supporting the development of state and local law enforcement fusion centers, 
highlighting the complexity of the landscape and challenges around competing 
information exchange policies and priorities [15,16]. While data and information 
sharing to enhance situation awareness and protect the public’s health is clearly 
legitimately needed in circumstances, there also remains much to be worked out 
regarding how much information is needed, by whom, and for what purposes [17]. 

BioPHusion, as a program at CDC, is in its infancy and in the initial phases of 
information source acquisition and report production.  The program is likely to evolve 
dramatically over the next few years and be combined with other agency-wide 
biosurveillance efforts and approaches to compliance with IHR reporting requirements.  
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In this paper, we describe the conceptual approach to the components of establishing 
situation awareness from a federal perspective as a means of inviting dialogue about 
both the need for public health situation awareness as well as mechanisms for achieving 
it.  Significant cultural, scientific, policy, resource, and communications barriers exist to 
both achieving shared public health situation awareness at CDC and among the broader 
public health community.  However, anecdotal evidence suggests that the BioPHusion 
model may be helping to highlight options and opportunities to move public health 
situation awareness forward.   
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Biosurveillance, Case Reporting, and Decision
Support: Public Health Interactions with a

Health Information Exchange

Rebecca A. Hills, William B. Lober, and Ian S. Painter

Center for Public Health Informatics, University of Washington

Abstract. This paper describes support for three public health prac-
tice domains in demonstrations of a model health information exchange
(HIE): biosurveillance, case reporting, and communication from public
health to providers through integrated decision support. The model HIE
implements interoperability through the use of existing semantic and
syntactic standards specified as part of Integration Profiles to support
specific data transfer use cases. We implemented these profiles in sev-
eral public health applications using a service-orientated architecture ap-
proach. Methods were validated for each public health domain in national
showcase demonstrations. We believe that this work has implications for
the integration of public health functions into any HIE, regardless of its
architecture, because our informatics methods support a distributed en-
vironment. This approach may be extended to strengthen development
of the Public Health Grid, a project currently being led by the Centers
for Disease Control and Prevention.

Keywords: Health Information Exchange, Surveillance, Case-reporting,
Decision Support.

1 Introduction

1.1 Public Health Engagement with the National Health IT Agenda

Both technologies and organizational structures to support Health Information
Exchanges (HIEs) have evolved rapidly over the past several years. A variety of
other acronyms, including NHII (National Health Information Infrastructure),
RHIO (Regional Health Information Organization), SNO (Sub-Network Organi-
zation), and RHIN (Regional Health Information Network), refer to variants on
the same idea: supporting access to information across organizational boundaries
in support of individual and/or population health. HIEs inherently address issues
of sharing data across organizations, as well as the semantic and syntactic chal-
lenges of this practice, making them potentially invaluable to the increasingly
information-rich practice of public health.

In 2004 the United States Department of Health and Human Services (HHS)
released The Future of the Public’s Health in the 21st Century[1], describing
ways in which the United States healthcare system could be rebuilt to take full
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advantage of health information technology. The report identified four major
goals:

1. Inform Clinical Practice: Bringing information tools to the point of care,
especially by investing in EHR systems in physician offices and hospitals.

2. Interconnect Clinicians: Building an interoperable health information in-
frastructure, so that records follow the patient and clinicians have access
to critical health care information when treatment decisions are being made.

3. Personalize Care: Using health information technology to give consumers
more access and involvement in health decisions.

4. Improve Population Health: Expanding capacity for public health moni-
toring, quality of care measurement, and bringing research advances more
quickly into medical practice.

Goals #1 and #4 clearly identify roles for Public Health. Goal #2 has been
broadened to include the goals of security, scalability, and sustainability and is
being addressed through the Nationwide Health Information Network (NHIN).
Two of NHIN’s key activities are promoting the development of HIEs and de-
veloping and facilitating the use of standards for clinical exchange [2].

In recent years, HIEs have significantly increased in number and in function-
ality. Of the seven functional development stages defined by eHealth Initiative,
HIEs operating at levels five, six and seven are defined as fully operational [3],
demonstrating the transmission of data used by healthcare stakeholders. The
2008 eHealth Initiative annual survey of HIEs [4] identified 42 fully operational
HIEs in the United States, up from 32 in 2007 and 26 in 2006. Despite goal
#4, to improve population health, only five of the 42 functional HIEs report
provision of public health reporting functionality and services.

1.2 Essential Services of Public Health, and the Impact of HIEs

In 1994, the Public Health Functions Steering Committee developed a framework
to describe the Essential Services of Public Health [5]:

1. Monitor health status to identify community health problems.
2. Diagnose and investigate health problems and health hazards in the com-

munity.
3. Inform, educate, and empower people about health issues.
4. Mobilize community partnerships to identify and solve health problems.
5. Develop policies and plans that support individual and community health

efforts.
6. Enforce laws and regulations that protect health and ensure safety.
7. Link people to needed personal health services and assure the provision of

health care when otherwise unavailable.
8. Assure a competent public health and personal health care workforce.
9. Evaluate effectiveness, accessibility, and quality of personal and population-

based health services.
10. Research for new insights and innovative solutions to health problems.



12 R.A. Hills, W.B. Lober, and I.S. Painter

Many of the public health practices and processes used to provide these ser-
vices may be substantially enhanced by changes in the availability and flow of
information, both at the population and individual levels. Three examples of
potentially improvable practices that support one or more of these Essential
Services are: biosurveillance, case reporting, and the communication of alerts
and guidelines from public health to clinical providers through integrated clin-
ical decision support. Population surveillance and case reporting are important
components of the first two Essential Services: monitoring health status of a com-
munity, and diagnosing and investigating health problems within a community.
Population surveillance also plays a vital role in #10, research. Immunization de-
cision support and communication provide benefits falling into Essential Services
#6 and #7, enforcement and linking people to health services.

Examining these three practices in the context of an HIE highlights an inter-
esting spectrum of requirements. First, biosurveillance, reporting, and decision
support require, respectively: unidirectional flow of de-identified data, unidirec-
tional flow of identified data, and bidirectional flow of clinical data and tailored
recommendations. Second, there is a wide range in technological maturity of
these practices in an HIE context. Third, biosurveillance is mostly conducted
within public health agencies, while reporting and integrated decision support
require case-level interaction with care providers. Fourth, while all three prac-
tices are tied to essential services, they are viewed differently within the public
health community. Notifiable condition case reporting is a core process in health
departments, while the return on investment of biosurveillance remains contro-
versial, but both are fairly well understood. In contrast, decision support driven
by public health is a novel approach to distributing public health alerts and
guidelines, with very few real-world implementations to demonstrate its con-
cepts and value.

1.3 Demonstrating Public Health Interaction with an HIE

The Integrating the Healthcare Enterprise [6] (IHE) initiative was undertaken
in 1998 by healthcare professionals and industry to improve interoperability
of healthcare information systems. In pursuit of this goal, IHE promotes the
coordinated adoption and use of existing healthcare IT standards through an
ongoing collaborative process involving multiple players. In 2005 the Healthcare
Information Technology Standards Panel [7] (HITSP) was created as part of an
effort by HHS to promote interoperability in healthcare by harmonizing health
information technology standards. HITSP does not create standards, but instead
identifies existing standards for particular use cases. IHE has supported this
effort, using the IHE framework to demonstrate HIE capabilities across clinical
and population health use cases. The standards identified by HITSP have been
incorporated into Interoperability Profiles developed by IHE.

The phases of IHE’s coordination and adoption process are defined as: prob-
lem identification, integration profile specification, implementation and testing,
and integration statements and requests for proposals. During the implementa-
tion and testing phase, vendors employ the integration profiles and participate
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in face-to-face testing activities with other vendors. After the ”Connectathon”
testing activities, IHE sponsors Interoperability Showcases at both the Health
Information and Management Systems Society [8] (HIMSS) and Public Health
Information Network [9] (PHIN) annual conferences. The purposes of these show-
cases are to bring awareness of IHE activities to both the HIMSS and PHIN
communities and to provide a live demonstration of a model HIE.

IHE’s model HIE, as demonstrated during the showcases, can serve as a proxy
for performance at the level of a fully operational organization (levels 5, 6, and
7, as defined by the eHealth Initiative). Participation by a diverse set of vendors,
as well as the focus on scenarios, standards, and integration profiles making use
of standards, make the model HIE well-suited for testing and demonstration of
public health’s role in information exchange.

During the past three years, our research group has participated in five IHE
Showcases where health information exchange capabilities were demonstrated
at national health IT (HIMSS) [10] and public health informatics (PHIN) [11]
meetings [12]. Our role was to highlight increasingly rich information interac-
tions between the HIE and public health. We organized our demonstrations first
around biosurveillance, and then biosurveillance and case reporting together and
most recently we added communication from public health to clinicians through
decision support services. We successfully integrated both existing and new tools
into the HIE framework developed as part of the IHE initiative.

2 Methods

The primary goal of the IHE Showcases is to illustrate technical use cases for
information exchange through scenarios involving three to six vendor systems.
A story line is created to give a realistic feel to the scenario and to engage con-
ference attendees in specific capabilities of the model HIE. Groups of attendees
are given an orientation to IHE and then taken on walking tours through the
scenario, observing the interchange of information in different vendor systems.
We have typically played the role of public health, showing HIE information in
systems built to illustrate specific practices within public health organizations.
We will describe the IHE framework, specifics of the three scenarios we helped to
develop, and the framework we used to develop the purpose-built public health
applications.

2.1 The IHE Technical Framework

The IHE Technical Framework is essentially an integration guide, detailing
standards-based transactions between information systems [13]. IHE’s Integra-
tion Profiles (IPs) build on the Technical Framework, defining specific actors
and identifying transactions to realize use cases that address specific needs. For
example, one IP used in our demonstration is Patient Identifier Cross-Reference
(PIX), which implements a master patient index. The Cross-Enterprise Docu-
ment Sharing (XDS) profile makes use of ebXML [14], SOAP [15] and HL7 [16]
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Clinical Document Architecture (CDA) specifications to define clinical docu-
ment sharing. The Retrieval Forms for Data Capture (RFD) profile uses XForms
[17] technology to enable the gathering of form data from within an application,
for submission to an external location.

2.2 Biosurveillance Scenario

The scenario defined for the surveillance demonstration describes a patient with
severe flu-like symptoms who visits his primary care provider. The provider
sends samples to the lab for influenza type and subtype testing, and refers the
patient to the emergency department. As depicted in Figure 1, the visit summary,
the referral, and the lab orders and results are available as documents through
the HIE, using the XDS profile. In the emergency department the attending
physician reviews the referral document from the primary care provider and the
laboratory results. Public health is able to see both aggregate surveillance results
and individual patient results for A(H5N1) positive samples.

The HIE established a Shared Document Resource and granted access to au-
thorized providers as well as to the public health actor. Also, as represented
in Figure 1, public health conducted regular polling of the Shared Document
Resource, looking for laboratory documents of a specific type, e.g., positive labs
for A(H5N1). To accommodate the population perspective of public health a
new type of query was established that allowed public health to look for docu-
ments in a shared document resource or repository without specifying a patient
identifier. This allowed public health to fulfill monitoring, surveillance and event
management roles by retrieving population level data, while preserving security
and auditing frameworks as no identifiers were transferred to public health, and
logs of each ”public health query” transaction were recorded. In recent demon-
strations we created a public health dashboard to demonstrate visualizations of
the surveillance data. The dashboard provided access to tools for data manage-
ment, classification, analysis and characterization as well as visualization and
results (Figure 1). These data representations were made possible through in-
tegration of an existing web services framework (Shoki) [18]. The XDS system,
its scalability, and integration with an IBM Research epidemiological modeling
tool have been previously described [19].

2.3 Case Reporting Scenario

In the case-reporting scenario, also represented in Figure 1, a 28-year-old male
patient returns to his provider for the results of an HIV test. The provider reports
the positive HIV results to public health by accessing and auto-populating an
HIV Case-Report Form through the Electronic Medical Record (EMR) and then
submitting the form to Public Health. These steps were implemented using the
RFD profile. A vendor system acted as a Forms Manager, one of the actors in
the RFD profile, hosting the reporting forms and making the URLs available
to vendors wishing to add case-reporting functionality to their systems. After
retrieving a case-report form, based on physician action, a vendor EMR system
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Fig. 1. Prototype Health Information Exchange Showing Public Health Interactions
for Biosurveillance and Case-Reporting

used data from the patient record to populate fields on the form. Optionally,
supplemental information was completed by the provider before the form was
submitted to public health. The submission of the case report is represented
in Figure 1 by the arrow between Provider 2 and the Public Health Forms
Receiver. Public health received the reporting form, which was then stored in a
local case-report repository. Through a link to the public health dashboard, new
HIV case-reports were displayed as alerts. A public health case-report manager
accessed the list of case-reports, and was able to view details of the case and
annotate the form to reflect the ongoing case investigation.

Case-report forms for HIV were developed using the official case-report forms
for the states of Massachusetts and Washington. Xforms technology was used
to create forms similar in layout to the paper forms for the two states. The
Shoki web services framework [18] was used to make available tools for data
management, classification, analysis and characterization and visualization and
results.

2.4 Immunization Scenario

The immunization scenario shown in Figure 2 describes visits by a young child
and his parents to a clinician in the child’s state of birth, and then later to a
clinician in another state. It then addresses the need to ensure that, with respect
to the current requirements of that particular state, the child’s immunizations
are up to date when he begins school. At the first visit, the provider registers
the patient with the HIE and sends a record of the administered immunizations
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as a CDA document to the HIE’s document repository via a gateway. This
gateway allows the provider to update both the state Immunization Information
System (using an HL7 V2.3.1 message) and the document repository (an XDS
document) with the transmission of a single message. The child’s parents come
to an appointment with a provider in a different state several years later, but
are unable to provide an immunization record. This provider is able to query the
HIE to find previous records for the child. These records show that the child is in
fact due for several more immunizations. These immunizations are administered
and the record of this visit is also sent to the HIE.

The final part of this scenario demonstrates two roles for public health as the
child is enrolled in kindergarten. Again, the parents are not in possession of the
child’s immunization record but a nurse, with access to the HIE (via the consol-
idated immunization view represented in Figure 2), is able to locate the child’s
immunization records and display an immunization history. This limited access
would be appropriate for either a limited scope clinical provider, such as a school
nurse, a public health immunization clinic, or the parent themselves, with ap-
propriate authorization through an HIE-compliant personal health record. The
second role of public health direct, patient-specific, communication with the
provider or patient is illustrated by the provision of a decision support web ser-
vice for vaccine forecasting. This web service performs de-duplication and valid-
ity tagging of immunizations submitted and provides an immunization schedule
based on the current immunization recommendations.

In order for this seamless communication between providers, public health and
web services providers to take place, the existence of a standard method of rep-
resenting immunization information is essential. IHE’s Immunization Registry
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Content Profile [20], although still in draft form, was used successfully during
the demonstrations to enable the sharing of immunization information. This
profile defines standard messaging, document and web services formats for im-
munization data exchange among Immunization Information Systems and EMR
systems, HIEs and public health.

2.5 Integration of an Existing Web Services Framework

The existing web services framework, which we used to build public health ex-
ample applications for the Biosurveillance and Case-Reporting scenarios, is the
Shoki framework [18]. Shoki consists of services grouped into four areas, repre-
senting the four core functions of surveillance systems: data management; classi-
fication; characterization and analysis; and visualization and reporting. Within
these four focus areas, Shoki offers pluggable components allowing public health
to make use of diverse data sources, in this case, using data from the HIE. During
each of the showcase demonstrations we participated in, Shoki was easily inte-
grated into the IHE framework by writing wrappers to map IHE representations
of data to Shoki’s services. This has allowed flexible acquisition of incoming data
from the commercial systems participating in IHE.

3 Results

Our participation in the HIMSS 2006, 2007 [12] and 2008 [21] and PHIN 2007 and
2008 showcases brought the voice of public health into the scenario development
process, served to inform both the clinical and the public health communities
about IHE activities, demonstrated important public health practices to confer-
ence attendees, and helped the IHE community to understand that certain use
cases and requirements of public health differ from those of clinical users.

The IHE showcases schedule regular tours for conference attendees. Each tour
explores one of the scenarios step-by-step, making stops at each of the participant
stations, e.g., EMR system vendors, lab system vendors, infrastructure providers
and public health. The size of the tour groups reflected the relative sizes of the
conference (HIMSS is a much larger conference than PHIN) and interests of the
attendees reflected the different demographics of the groups.

Approximately 15 half-hour tours were given during the 3 1
2 days of the show-

case at the HIMSS conferences. Most conference attendees at HIMSS are asso-
ciated with the clinical community and the showcase brought awareness to that
community of the role and needs of public health within an HIE. At the two
PHIN conferences, where 2 1

2 days of demonstrations took place, approximately
10 tours were given and a large number of individuals visited outside of the
scheduled tour times. Questions and discussion initiated by visitors at PHIN in-
dicated a strong interest in IHE activities and the model HIE, as well as interest
in the possibility of extending the IHE model to support bidirectional commu-
nication between public health and providers, and specifically in demonstrating
this communication in the next Showcase.
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We demonstrated effective surveillance on both clinical and laboratory docu-
ments by periodically polling document registries to identify and retrieve relevant
information. The structure of these queries is unique because they lack patient
identifiers. Clinical users were required to provide patient identifiers to retrieve
documents and no IHE mechanism existed prior to our participation to conduct
a query looking for a set of documents matching some clinical criteria, e.g., In-
fluenza A. To accommodate the needs of biosurveillance, a new public-health spe-
cific query was developed and implemented for use in the biosurveillance scenario.

Submission of case-reports using the RFD profiles successfully demonstrated
a timely and efficient method for clinicians to comply with public health reg-
ulations. With the cooperation of EMR vendors and the standardization of a
method for retrieving forms, we demonstrated a streamlined method of case-
reporting that made both high-quality data available to public health rapidly
and that introduced little interruption to clinical workflow. The integration of
the Shoki web-services framework demonstrated a range of analytic and visual-
ization techniques made possible by the use of a single technical framework.

The public health and the XDS communities were successfully linked and
a model for bidirectional communication was demonstrated by the use of the
Immunization Registry Content Profile. Retrieval of immunization data from
repositories of clinical documents was straightforward. The use of the retrieved
data for personal health records, public health use or school use was demon-
strated. Making use of the document and patient registries, and patient demo-
graphic queries allowed the document repositories to compliment immunization
registries. Bidirectional communication was implemented through the novel invo-
cation of an external, decision support web-service [22] based on current Advisory
Committee for Immunization Practice recommendations.

4 Discussion

We were able to demonstrate, alongside commercial vendors of EMR, laboratory,
and other health applications, the potential benefits to public health of the stan-
dards harmonization efforts led by IHE. These efforts havemade possible improved
communications between public health and both providers and laboratories,which
in turn make possible integrated surveillance systems that increase the ability of
public health to identify and address threats in a timely manner. The potential
for public health uses of clinical data continues to be better understood, and al-
though this demonstration used only one of the several frameworks for an HIE,
the ideas presented generalize to other HIE frameworks, as well as other methods
of connecting public health to clinical providers, including Grid technologies.

Providing patient-tailored decision support is an example of public health-
to-provider communication (other examples are case identification, information
requests during investigations, and distribution of other alerts and guidelines).
It is rare, outside of community clinics or other situations where a public health
agency is the direct provider of clinical services, for public health to have permis-
sion to directly insert guidelines into a medical record. Even where this capacity
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may exist, the technical obstacles are daunting. The IHE framework allows
patient-tailored decision support and guidance to be made available to clinicians
regardless of which EMR they use. This capacity offers perhaps the greatest po-
tential of all three use cases we have demonstrated.

With the help of public health informatics practitioners and researchers, the
use of both an information exchange framework and the service oriented archi-
tecture (SOA) methodology has the potential to make secondary use of clinical
data for public health a consistent reality. The model HIE used during the show-
cases is one of many possible frameworks for the connections between providers,
laboratories and public health entities; however embracing an SOA methodology
is likely to increase the possibility of reuse of tools developed regardless of which
model is used for information exchange. SOA is not limited to HIEs, and the
pluggable components demonstrated in our work could be incorporated into a
Grid infrastructure in order to expose data and services for use by other orga-
nizations on the Grid. There is great potential for expanding the Shoki tools
demonstrated at the IHE Showcase. For instance, one might expose or retrieve
data via an adapter, which would bind certain XDS transactions to OGSA-DAI
[23] Grid queries.

The approachwe are taking to Grid integrationhas led us to a broader definition
of Shoki service categories, to reflect a spectrum of services beyond those initially
described for surveillance [18]. The original categories of data management: classi-
fication, characterization and analysis, and visualization and reporting, have been
expanded to include the use cases of decision support/communication and case
reporting. We have reorganized the services used for these IHE Showcases into:
Distributed Query/Synthesis,Data Integration/Management,Data Quality, Case
Detection, Classification, Characterization/Analysis, Visualization/Reporting,
Security/Management, and Messaging/Alerting. These categories correspond ap-
proximately to those of the National Public Health Toolkit recently proposed by
CDC’s National Center for Public Health Informatics.

Clearly HIE’s can be of benefit to public health, but public health’s unique
requirements are not always recognized. Public health can use interoperability
standards to monitor population health trends, improve both the efficiency and
rate of reporting of notifiable conditions, and to provide input to clinical care.
Public health routinely collects data at various levels of aggregation- the level of
the individual for case reporting, and at higher levels of aggregation for popu-
lation surveillance. At the lowest level of aggregation, i.e., notifiable conditions,
the reporting of clinical data is usually legally mandated, and patient identifica-
tion is essential for public health follow-up. At higher levels, such as population
surveillance, data collection is legally mandated in some jurisdictions, but often
no law requires the collection of data. In this context, patient identifiers are
not essential to public health; in fact, transferring identifying information may
be detrimental to the community’s trust of public health institutions. Concerns
with privacy and trust initially led the IHE framework to support only queries
based upon specific patient identifiers. The higher aggregation levels required
for public health to provide certain services indicate a need for data exchange
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that does not exist in the clinical context for which most HIE’s were developed.
Thus, it is not adequate for public health to simply wait for and then use HIEs.
One of the most important lessons learned as a result of participation in these
demonstrations has been that partnerships between public health, private in-
stitutions and vendors are needed to make certain that public health needs are
considered as the HIE infrastructure becomes a reality.

5 Conclusions

We demonstrated to both a public health and a clinical audience, that inte-
gration of public health functions within a model HIE is possible, desirable,
and achievable. In the future, expanding the demonstrations to include exam-
ple practices impacting more of the ten essential services will bring attention to
other needs and constraints on public health and clinical providers and the way
they interact. It is our belief that most data-centric functions of public health
will benefit from the increased efficiency, improved data quality, and increased
availability of data made possible by HIE integration. Leveraging the data re-
sources made available through HIEs can help identify and address quality of
care issues, can benefit population health research, and can serve to more fully
integrate disease registries. We see these potential benefits as significant and
hope to continue engaging IHE, the HIE community, and public health, and to
move on to real-world implementation of the concepts presented here.

Only with the implementation of the IHE framework in a real HIE environ-
ment, rather than the model of the IHE Showcase, will we be able to discover
and accurately describe the technology and policy challenges to adoption of the
frameworks being developed by IHE. While the IHE profiles are adopted by new
vendors each year, it is also important to examine legacy systems and prac-
tices in clinical and public health settings. The methods necessary to retrofit
these systems to enable participation in an HIE based on this framework will be
important to ensure maximum participation in HIEs in the future.

Public health has increased its use of information technology to acquire, ana-
lyze and report on data of interest to public health practitioners. In this time of
rapid development and change in information systems it is essential that public
health be a part of the decision-making process in order to efficiently and ef-
fectively access and use the data being made available by laboratory and EMR
systems as they are integrated into HIE’s.
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Abstract. Surveillance applications to monitor health-related data have matured 
rapidly over the last several years.  A newly emerging development is an 
emphasis on harvesting and evaluating the timely but potentially inaccurate 
information present in unstructured sources such as Internet news feeds and 
sites. An important development for the surveillance on both structured and 
unstructured datasets is the exchange not of the primary datasets that feed these 
systems, but of the evaluated results of such analysis. This paper introduces 
recent work addressing a model for the recording and tracking of events and for 
the dissemination of information about these events to other agencies. It will 
introduce a structured relational database model for events, an ontology for 
infectious disease events, and a semantic web representation. The strengths and 
weaknesses of the three approaches and future directions will be discussed. 

Keywords: Biosurveillance, open source intelligence, event model, ontology, 
semantic web. 

1   Introduction 

Traditional automated surveillance systems rely on the integration and analysis of streams 
of structured data from public or private sources and the development of algorithms to 
detect anomalous activity within those streams.  These systems operate upon the 
structured primary or secondary source data that is transmitted to the analytical 
application. An emerging emphasis is on the development of data fusion or open source 
intelligence centers, which seek to harvest and integrate information from the most timely 
but most unreliable of sources, the open Internet. Some systems, such as Clark Freifeld 
and John Brownstein’s HealthMap [1], provide for automated harvesting of events; others, 
through automated systems, assist in the manual creation of events ([2]-[4]).  

The outcome of surveillance across both structured and unstructured datasets by 
applications and by analysts is the identification of events of significance.  While there 
are standards for the representations and transmission of primary and secondary 
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laboratory and clinical data, such as the Health Level Seven (HL7) [http://www.hl7.org/], 
message protocol and the American Health Information Community (AHIC) Minimum 
dataset [http://www.hhs.gov/healthit/standards/resources/], there has not been an emphasis on 
the automated exchange between systems of the vetted results of surveillance.  As more 
and more local and regional surveillance systems mature, it is important that the vetted 
results of surveillance across systems can be exchanged and be actionable for other 
organizations. 

An actionable specification of the outcome of biosurveillance would need to 
minimally include a description of the dataset processed, the activity and affected 
region, the significance of the anomaly, and an evaluation of the confidence in the 
accuracy of the information and in the analytics techniques used to identify the 
anomaly. Biosurveillance systems should produce as an end product a tertiary record 
of events of significance, whether natural or man-made, that can be analyzed, tracked, 
and exchanged with other surveillance systems and with stakeholders to increase the 
coverage and effectiveness of surveillance across the nation. 

The National Bio-surveillance Integration System (NBIS) ([5], [6]) is an application 
designed to facilitate the identification of events of national significance through the 
harvesting of open source information and to facilitate the collaboration on and 
dissemination of the details of these events with a broader community.  

2   Related Work 

Work has progressed on ontology-centered or knowledge-based bioterrorism 
surveillance, through an ontological framework for describing and matching data and 
methods in a surveillance application ([7], [8]). A simple ontology of events has been 
used for events found through natural language processing on texts ([4], [9]).  An event 
calculus for tracking epidemic spread has been developed [10] in terms of the 
descriptions of spatio-temporal objects. A number of ontologies have been developed 
and are available at the Open BioMedical Ontologies site [http://www.obofoundry.org/]. 

To stimulate discussion in the field on a semantic exchange of the structured 
details about events found as the outcomes of biosurveillance, this paper will describe 
the implementation within NBIS of an event model for recording and tracking 
significant events. An "event" can be an elemental occurrent or a compound set of 
related occurrents.  The next section will describe three representations of an event 
model. The implementation in the NBIS system and in a semantic web demonstration 
will then be presented, followed by a discussion of the strengths and weaknesses of 
the different approaches and finally some future directions. 

3   Methodology 

There are three main approaches to recording and tracking structured details about 
events; to create a set of tables in a relational database that have fields to record the 
relevant information; to use a semantic relationship model through the representation 
of the data, using an ontology as a schema; to represent the details of an event as a 
Semantic Web markup within unstructured texts. 
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3.1   Relational Event Model  

An event model was created for the NBIS 2.0 application using a relational database 
for population of the details of events of significance, through both manual and 
automated data entry. While the initial emphasis on the event model was for 
infectious diseases, the need for tracking events in other domains was considered in 
the design. The main categories that were created for tracking an event consisted of an 
event header; the host species; the agent, disease, vector and reservoir involved; the 
location; the source of the information; and the evidence or findings. 
 

Header. Each event has an overall description of the event and its stage in the 
analytical process.  The first database table describes the unique event identifier, a 
title, a user label for convenience in grouping, and a version number for tracking the 
history of the data entry. 

In addition to these identifiers, there are overall descriptions of the event. The 
descriptions are the domain (human, animal, plant or the environment); the agent 
category (chemical, biological, radiological or climactic); the relevant threat scenario 
(for example, pandemic influenza, foot and mouth disease or food contamination); the 
overall starting and ending dates; and the background and significance of the event to 
place it in context. 

Finally, there are workflow indicators to track events through the analytical and 
publication process. 

 

Table 1. Event workflow elements  

Element Description 
Validity Is the event valid, or was it generated to test the system or 

generated during a simulation or table-top exercise 
Status Is the event record in the initial stages of description; has it 

been accepted as a significant event; has it been modified; or 
has it been rejected as a significant event 

Surety The confidence in the event as suspected, confirmed, or denied 
Criticality Understanding the significance of the impact of the event, with 

indications such as low, medium, or high 
Change In what way the event has changed since its last report, such as 

new information having been provided that changes the 
original understanding of the event; it has been updated to 
reflect new developments; it has been judged to have a greater 
impact; or it has been judged to be lessening in impact 

Publication Whether the event is currently under distribution to 
stakeholders as an active event 

 
The model consists of one main table to hold this descriptive information.  All 

other categories of details are held in separate tables to allow a one-to-many 
relationship, so multiple hosts or locations, for example, could be used to describe an 
event. 
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Hosts. The second category for an event description contains the details of the host of 
the event. If the host involves an organism, the host can be described using a common 
name, and also the official name from an organism taxonomy, such as the NCBI [11]. 
If the host is human, then gender can be specified, along with upper and lower bounds 
for ages to handle aggregate data.  Additional information about hosts are the multiple 
symptoms and/or risk factors that are present. 
 
Agents. The category of the agent for the event is given in the header. Additional 
details are included in this separate table to give the specific organism, chemical, 
nucleotide or climactic agent. Allowance was made to be able to specify a toxin, for 
example, as the agent separate from the host organism generating it. 
 
Diseases. Often in open sources, a distinction is not made between the agent causing a 
disease and the disease itself. As there is not a one-to-one relationship between them, 
a separate container was created to hold the common name for the disease as well as 
an element for the standard name. 
 
Vectors and Reservoirs. To enable a fuller description of the context of an event, the 
common and standard names for the vector and reservoir can be recorded.  This 
provides context when an agent that is perhaps endemic in one region is present in a 
new region due to the transmission by a different vector, such as apparently occurred 
in the 2005-2006 Reunion Island Chikungunya outbreak. 
 

Locations. The location for an event can consist of the named location or a latitude 
and longitude; a description of the extent of the event (such as a county, state, 
country, or continent); and any relevant geographic features, such as landform, 
population density or development. 
 
Sources. In surveillance on structured datasets, the source of the data is typically 
fixed and well understood. In surveillance using open source information, the origins 
of the details of a breaking event must be described.  Not only must the publisher be 
cited, but also the identification and role of the authority being quoted in the 
publication need to be recorded. There is furthermore a need for analysts to specify 
their confidence in the reported results. In a recent open source intelligence study 
[12], a "chain of denial" corpus of national reports in several countries showed a not 
uncommon pattern of official denials in the face of an eventually confirmed outbreak.  
 
Findings. The most difficult aspect to model is the description of the findings or 
observational evidence of the event.  Most importantly a finding for an outbreak or 
case consists of the specific lab test and result, the date of the sample or of the test, 
and the laboratory performing the test.  An additional element allows for comments 
concerning the specificity and accuracy of the test.  Since many of the fields are 
similar, the finding table can also be used for other types of observational evidence 
related to the event.  It is difficult to have sufficient fields for recording information 
without having analysts have to resort to free text entry fields, making accurate 
aggregation, query and retrieval more difficult. 

The tables for the header, hosts, agents, diseases, locations, vectors and reservoirs, 
locations, sources, and findings provide the fields to enter and track the details about 
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an event. These details allow querying, aggregation and summarization over multiple 
events, or the dissemination of specific details about a single event. 

3.2   Ontology for Infectious Diseases 

All surveillance systems provide for the storage and integration of data, but typically 
only deal with a reasonably small number of data types and domains.  The integration 
among datasets requires configuration tables or views that specify the key columns 
that can be used to join across tables and the columns that represent the same 
information.  As the number of datasets and domains they represent increase, the 
maintenance of such mapping tables becomes unwieldy. For the purpose of 
integrating large, heterogeneous datasets, a more robust approach is the semantic 
integration of datasets through the use of an ontology. The ontology provides a single, 
unifying framework wherein it is possible to (1) define in a very precise manner the 
entities and relations involved in a given domain(s), (2) encode subject matter 
expertise in the form of rules, (3) link datasets with other knowledge sources such as 
clinical terminologies and biomedical ontologies, and (4) provide a global query 
schema for data retrieval.  

An ontology for infectious diseases was prototyped within the NBIS 2.0 application 
to integrate datasets from differing domains. It was initially targeted at published avian 
influenza case details and was expanded to provide for the storage and integration of the 
existing NBIS data feeds from across domains, providing the objects, events, attributes 
and relations needed to minimally describe the structured data feeds.  The infectious 
disease ontology was developed within the framework of Basic Formal Ontology 
(http://www.ifomis.org/bfo), an upper-level ontology that underwrites a principle-based 
approach to ontology design. In addition, a number of reasoning modules were added to 
the ontology to support temporal [13] and spatial [14] reasoning. Finally, a modified 
version of the ISO Standard Common Logic (ISO/IEC 24707:2007) was used to encode 
the ontology content. (Note: Automated translation methods have been developed to 
translate the infectious disease ontology into OWL [http://www.w3.org/TR/owl-ref/] a 
Semantic Web-based ontology language.)  

The NBIS ontology consists of a class hierarchy, where the two highest-level 
classes are Continuant and Occurrent.  These are technical terms that mark a 
fundamental way that entities exist in time. Continuants are entities that preserve their 
identity over time, even as they gain and lose parts. The NBIS ontology further 
divides the Continuant class into two disjoint subclasses: Object and Object Attribute. 
Objects are the bearers of qualities such as diseases and symptoms and the entities 
that participate in events (e.g. the organisms that are involved in an outbreak). 
Examples of Continuants in NBIS include Organisms, Organizations (e.g. Hospitals 
and Government Agencies), Geographic Regions (e.g. Countries and Cities), and 
Artifacts (e.g. Documents).  

Object Attributes are entities that depend for their existence on the objects that bear 
them. Examples of object attributes include states, roles, qualities, functions, etc., and 
can be organized into taxonomies. Examples of object attributes in NBIS include 
object qualities such as diseases, symptoms, gender and age as well as roles such as 
pathogen and host. 
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Since we are using the general term "event" to mean the anomalous activity 
discovered through biosurveillance, we have replaced the commonly used ontology term 
“event” with the technical term "occurrent." Occurrents are dynamic entities that have 
temporal parts. Examples of occurrents include the transmission of infectious agents, the 
spreading of a disease and the onset of symptoms. Table 2 represents a sample of the 
NBIS ontology hierarchy.  

 

Table 2. NBIS Ontology (Sample) 

Continuant 
Object 

Organism 
Organization 
GeographicalRegion 

Object Attribute 
State 

BeingInfected 
Role 

Pathogen 
Host 

Quality 
Disease 
Symptom 

Occurrent 
ClinicalEvent 

DiagnosticProcedure 
LaboratoryProcedure 
Hospitalization 

PublicHealthEvent 
Infection 
Onset 
Recovery 
Death 

 
Besides the subclass relation that forms the backbone of the NBIS ontology, there are 

also a number of associative (i.e. non-hierarchical) relations that link entities together. 
Each relation in the NBIS ontology is given a signature that identifies the types of 
entities that are related to one another through a given relation. Here we classify a 
number of relations used in the NBIS ontology in terms of the high-level classes: 
Object, Object Attribute, and Occurrent. For example, the familial relation parentOf 
would be classified as an Object-to-Object relation since it relates two objects. 

 

Table 3. NBIS Relations (Examples) 

Object-to-Object 
locatedIn 
spatialPartOf 
memberOf 

Object-to-ObjectAttribute 
hasDisease 
hasSymptom 
hasRole 
 

Occurrent-to-Object 
hasHost 
hasPathogen 

Occurrent-to-Occurrent 
temporalPartOf 
precedes 

 

The NBIS classes and relations provide the basis for the creation of a number of 
rules that make it possible to make connections between heterogeneous data feeds and 
semantically integrate those datasets. 



28 N. Grady et al. 

3.3   Semantic Web Representations of Events 

The vision of the Semantic Web [15] is an extension to the current Web to tag 
information to make it accessible to automated processing. Currently, biosurveillance 
information is obtained through text mining techniques that harvest content from semi-
structured Web pages, as for example, in the HealthMap system [1], or it is obtained 
directly through structured data services such as RSS (en.wikipedia.org/wiki/RSS) 
feeds. Many sites export RSS data, for example, from EpiSpider [http://www.epispider. 
org/], GDACS [http://www.gdacs.org], or RSOE [http://visz.rsoe.hu/alertmap/index. 
php?lang=].    

There are a number of semantic frameworks being developed by different 
communities under the Linking Open Data umbrella [16].  These frameworks 
describe the contents of Web pages in much the same way as an ontology, but use the 
elements of objects and properties.  Data is described through the use of RDF 
(www.w3.org/TR/rdf-primer) triples, which specify a relationship: Subject -> 
predicate -> object, which can be used to describe the full ontology in OWL. 

The NBIS relations can be easily mapped into this triplet framework where subject 
and object are taken from the ontology's objects, attributes, and occurrents. The 
predicate is taken from the set of relations, e.g. Host -> hasDisease -> Disease.  

An advantage of this approach is that RDF schemas can be published and easily 
incorporated into other systems. Tools exist for the creation and automatic processing 
of such datasets. In addition the properties can be tagged within unstructured texts, for 
example, in a semantic wiki, that allow structured data queries over the texts. 

4   Implementation 

The event model was implemented in the NBIS 2.0 application with a relational 
database representation.  Open source articles were harvested from the Internet from a 
number of sites and news feed queries for streaming to system users. Conceptual 
categorization was used to indicate if an article referred to current events or better fit 
other categories, such as historical retrospectives, corporate product announcements, 
or research grants. The article list was presented through the user interface created 
using a wiki. Users can scan article titles, sources, and categories, and select articles 
that describe an event of interest. Entity identification was used to extract location, 
agent and disease mentions from selected articles to pre-populate an event record.  
Additional wiki extensions provided for viewing or editing the elements in an event 
record. A workflow extension was created to allow analysts to route the events for 
additional research, rejection, or approval to publish.  The final wiki extensions 
allowed analysts to map specific event elements to extract into templates for creating 
wiki pages with the information desired for publication. 

An ontological schema for infectious diseases was prototyped within the NBIS 
project to transform structured data feeds for storage in a relationship database.  
Common logic queries can retrieve event records according to the semantic meanings 
of the elements, independent of the data feeds the data came from, and through the 
contextual data relationships, for example, to allow ease of queries such as "…from 
any country adjacent to this country." 
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An additional demonstration case study has been developed to put a corpus of 
articles on recent Chikungunya outbreaks into a semantic wiki. The semantic wiki 
provides for summarization of the objects in the articles, with easy querying for other 
pages containing the same objects or predicates.  

5   Discussion 

There are strengths and weaknesses to the differing approaches to event representation.  
A relational database model imposes a rigid structure on the model, making changes 
difficult. The inflexibility of the model potentially encourages users to want to use free-
form text in fields, rather than limited code sets, reducing the utility of queries over 
events.  The one-to-many table structure means that separate events need to be created 
if, for example, there are different vectors at different locations.  Relational structures 
are easier to implement and are more familiar to analysts, but are difficult to change in 
production systems. 

An ontological representation must be created by experts to ensure there are no 
circular definitions.  The ontology makes it much easier to incorporate contextual 
information for richer and yet simpler queries, since relationships can be traversed to 
generate query results.  The query language and relationship framework is, however, 
not as familiar to users and requires significant user training. 

The semantic web representation has the advantage of a simpler representation than 
an ontology, flexibility in adding relationships, and easier reuse of other semantic 
representations. The tools for the manipulation of the schemas are more commonly 
available. It has an advantage of allowing annotation directly within the unstructured 
text, useful for open source intelligence systems. As the tools and their usage matures, 
this approach will allow structured queries over unstructured material, due to the 
semantic tagging, and data interchange among systems through Web services. It is 
more difficult, however, to construct aggregate data from a semantic representation. 

6   Conclusions and Future Work 

This work has used three different approaches to generate specific models of events 
within biosurveillance that allow for the editing, versioning, workflow and 
publication of these events. These models have been used to describe events harvested 
from open source intelligence and to integrate structured data from different domains.  
The relational model is deployed in the production NBIS system. The ontological data 
integration and semantic web representation are being evaluated for utility of use. 

A significant issue in event representation is the continuing need for standard 
vocabularies and contextual datasets.  While NCBI has an extensive taxonomy of 
organisms, it is, of course, incomplete.  Good contextual datasets are difficult to 
obtain for the wide range of data needed for comprehensive biosurveillance. 

Open source data is the most timely, but also the most unreliable of information. 
Additional work is needed to standardize the representation of the provenance 
[http://twiki.ipaw.info/bin/view/Challenge/] of the data and the assessment of its 
reliability for better evaluation of the events.  
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This preliminary work indicates the potential of semantic data representations for 
the conduct of biosurveillance, providing integration of disparate datasets and 
providing structured data through annotation of unstructured articles. The principal 
challenge to ensuring the scalability of a system lies in ensuring the completeness of 
the semantic representations, identifying important contextual datasets, and encoding 
the surety and provenance of the analysis. 

The most important next step is in community discussion of an event model for the 
specification of standards for the interchange of information between biosurveillance 
systems.  The advantages of having the experts closest to the data provide the analysis 
to specify the events are clear, as is the need to exchange information between 
surveillance systems covering different regions, datasets, and domains.  

A future technical direction is to integrate the ontology and semantic web 
representations with other ontological development, an example being an infectious 
disease ontology at the Open Biomedical Ontologies (http://www.obofoundry.org/). 

A more significant challenge for the future will be the construction of reasoning 
engines to process these exchanged events, being described [17] as "Higher Order 
Mining."  The data mining community has dealt with the need to combine the results 
of multiple models generated by the same algorithm on the same data through voting 
schemes (known as bagging or boosting). Less well developed is the need to combine 
the results of different algorithms applied to the same data (known as stacked 
generalization). A reasoning system over events will be difficult, since these events 
are, in effect, the output scores of different models over different datasets, with the 
output reduced to a score of one for the event region and zero elsewhere. Reasoning 
over events will be reduced primarily to overlap detection and change detection as the 
event extent and severity change over time.  The ability to reason over the correlation 
between events will be a challenge if only the vetted event details are exchanged. 

As Chute stated in a recent editorial [18] "…the emerging dependency of the health 
sciences on increasingly practical semantic technologies to organize and leverage 
these vast information resources is now unquestioned."  In this paper, we argue that 
these technologies also need to be applied to event modeling to facilitate information 
exchange among biosurveillance systems and practitioners. 
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Abstract. With the growing threat of emerging and re-emerging infectious 
diseases, which spread more easily and quickly worldwide resulted from the 
globalization, it is necessary to be capable to forecast significant changes of 
infectious diseases for emergency preparation purpose. Foresight China Project 
aims at exploring a new method by identifying the drivers of infectious diseases 
and predicting the trends of these drivers. 

Keywords: Infectious diseases, surveillance, foresight, drivers. 

1   Background 

Today’s world is a small village. Globalization is by no means a new phenomenon, 
transcontinental trade and the movement of people began at least 2000 years ago since 
the ancient Silk Road trade route. The global spread of infectious diseases followed a 
parallel course, to some extent, it’s the epitome of globalization. Now, after two 
millennia, human pathogens are experiencing another bonanza from a new era of 
globalization, which is characterized by faster travel over greater distance and global 
trade. Under this circumstance, what happens in China could have significant impact on 
other places or countries and vice versa. 

With the growing threat of emerging and re-emerging infectious diseases, it is 
necessary to forecast significant changes of infectious diseases for emergency 
preparation purpose. However, “It is very difficult to make predictions, especially 
about the future”. The global scientific community is faced with the huge task of 
assessing the possible future impacts of global change drivers on infectious diseases. 

The existing methods used to predict future trends in infectious diseases are mostly 
quantitative predictions, including predictions and modeling. However, the quantitative 
methods, which are based on historical data and use mathematics and statistics to make 
estimations, are mainly fit for short-term prediction within 5 years. Out of this scope, a 
mass of variables and conditions can no more be estimated, in which case the 
confidence interval will expand immeasurably [1]. Besides, the quantitative methods 
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are limited to specialized pathogens, e.g. HIV/AIDS and Measles, they do not apply 
well to unknown or emerging pathogens [2]. 

Without some moderately accurate predictions or at least early warning, we cannot 
have a safe global village. To develop a holistic approach to risk assessment of 
infectious diseases under global change, we need to change our view from the direct 
risk assessment of specific infectious disease outbreaks, to focus on predicting the 
trends of risks of infectious diseases occurrence, and then trends of diseases. 
Foresight China is a novel and simple approach to forecasting future trends in drivers 
and families of infectious diseases, needs for surveillance and public health 
preparedness. 

2    Method 

Based on literature review and experts consultation, Foresight method identified a 
series of families of risks for the study of possible trends in those drivers.  

2.1   Foresight China I 

Foresight China I was under performance from 2004 to 2006, supported by Foresight 
Funding, enacted by PUMC and HPA. The Basic Risk Model for Infectious Disease 
Risks was adapted from UK colleagues, and 36 leading Chinese experts were 
consulted. Some important factors affecting future risks were identified, including 
governance and social cohesion, demography and population change, conflict, 
Technology & Innovation and their governance, agriculture and change of land use, 
economic factors, trade and market related factors, transport and tourism, human 
activity and social pressure[3-5]. 

2.2   Foresight China II  

From the result of Foresight China I, both HPA and China consider this program useful 
and meaningful, so the Foresight Funding determined to do a follwoing research, that’s 
the Foresight China II. In July 2007, we carried out the Foresight China II with 
improved methodology, supported by the British Embassy Beijing and enacted by 
PUMC. 

From lessons learnt from Foresight China I, we made some improvement in our 
methodology. First, we did systematic literature review, based on which we identified 
the scientific evidence for 12 families of drivers of infectious diseases occurrence; 
Second, we analyzed the existing infectious disease surveillance systems in 4 countries 
(China, Britain, America and Japan) to identify if they capture data on these drivers; 
Third, we defined each driver in the questionnaire which would achieve improved 
consensus. At last, we expanded our consultation to 181 leading Chinese experts to 
confirm the improvement opportunities to assess feasibility of the opportunities and to 
predict trends of the drivers in China. 



34 J. Feng, J. (Jesse) Huang, and A. Nicoll 

3   Result  

3.1   Systematic Literature Review 

As people’s knowledge of disease turned from biomedical mode into the 
“biology-medicine-society-environment” medical mode, role of “environment” factor 
in the “epidemiological triangle”, which affects the epidemical occurrence and 
prevalence, arouses people’s attention. When environment changes, pathogens and 
hosts also change. The research studies the major influencing factors of epidemical 
occurrence and prevalence from these three aspects, which are “pathogen, host and 
environment”. 

Based on the literature review, despite of the nine family drivers identified in 
Foresight I, we identified another three family drivers on infectious diseases［ 6-8］ , 
which are environment related factors, iatrogenic related factors, animals and plants 
related factors. Finally, there are 12 families and 50 elements identified as drivers of 
infectious diseases occurrence. 

3.2   Extensive Analysis of Existing Infectious Disease Surveillance Systems in  
4 Countries 

3.2.1   The Identify of ‘Key Surveillance Infectious Diseases’ 
Our research compared the infectious disease surveillance systems in China, Britain, 
America and Japan, including the contents under surveillance and the data they have 
collected. The infectious disease surveillance systems of Britain, USA and Japan are 
chosen to compare with that of China, because Britain and USA are western developed 
countries with relative integrated surveillance systems, and Japan is an Asian country 
with similar culture and geographical environment to China. Their achievements in the 
infectious disease surveillance system are worthy for us to study. 

Because of the presence of an enormous number of infectious diseases, it is neither 
necessary nor practicable to monitor all these diseases in most countries or areas, 
especially in those with quite limited resources. Surveillance system of 'key 
surveillance infectious diseases', that is, infectious diseases with major public health 
significance in certain country or area, should be established primarily.  

According to the six principles[9] introduced by WHO on the definition of key 
surveillance infectious diseases and 37 notifiable infectious diseases in China, we 
identified 18 key surveillance infectious diseases, which are Tuberculosis \ Measles\  
Typhoid and paratyphoid\ Malaria\ Newborn tetanus\ Rabies\ Gonorrhea\ Syphilis\ 
HIV/AIDS\ Hemorrhagic fever with Renal Syndrome\ Encephalitis B\ Epidemic 
cerebrospinal meningitis\ Leptospirosis \ Plague\ Dengue fever\ Bacillary and amoebic 
dysentery\ Viral Hepatitis and Bird flu. 

3.2.2   Analysis of Infectious Disease Surveillance Systems in China, Britain, USA 
and Japan 

Theoretically, as mentioned in many references [10-12], the key information that 
should be collected by infectious disease surveillance system are: demographic data, 
disease morbidity or mortality, investigation data of influencing factors, record of 
intervention measures, topic-based investigation report. 
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But in fact, from the analysis of surveillance status of 18 key surveillance infectious 
diseases in four countries, we find that the present infectious disease surveillance 
mostly stalled at the biomedical model, which emphasizes the passive surveillance of 
patients and pathogens, or, collection of demography and morbidity/mortality. 
However, investigation data of influencing factor is seldom collected.  

3.3   Leading Experts Consultations in 12 Areas 

3.3.1   Characteristics of the Experts 

Table 1. Foresight China II: Identification and Detection of Infectious Diseases: characteristics 
of the experts consulted  

  Number Proportion (%) 
Age(year)    
 <40 23 12.7 
 40-60 137 75.7 
 >60 21 11.6 
Area    
 North China 108 59.7 
 East China 32 17.7 
 Middle China 7 3.9 
 Southwest 8 4.4 
 Northwest 10 5.5 
 Northeast 7 3.9 
 South China 9 5.0 
Title    
 Advanced 116 64.1 
 Associate-advanced 59 32.6 
 Middle 6 3.3 
Education Lever    
 Doctor 52 28.7 
 Master 51 28.2 
 Bachelor 72 39.8 
Major    
 Management 6 3.3 
 Public Health 97 53.6 
 Clinical Medicine 15 8.3 
 Basic Medicine 12 6.6 
 Agriculture 15 8.3 
 Economic and Trade 8 4.4 
 Tourism and Traffic 5 2.8 
 Environment 8 4.4 
 Other 15 8.3 
Years on this major    
 Below 10 8 4.4 
 10-19 68 37.6 
 20-29 79 43.6 
 30 and above 25 13.8 
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3.3.2     Results  
 

Area 1 Governance and social cohesion 
 

Table 2. Foresight China II: Identification and Detection of Infectious Diseases “Governance 
and social cohesion” expert opinion 

Driver of infectious diseases? Need to surveillance? Feasibility to surveillance? elements 

Yes  No  Yes   No  Yes  No  

Bio-security governance 12(85.7)  2(14.3) 14(100) 0 14(100) 0 

Social cohesion 7(50.0) 7(50.0) 6(42.9) 8(57.1) 4(28.6) 10(71.4) 

Illegal practices 8(57.1) 6(42.9) 8(57.1) 5(35.7) 7(50.0) 6(42.9) 

international/national/reg
ional interactions 
affecting governance 

14(100) 0 13(92.9) 0 12(85.7) 1(7.1) 

lack of interaction 
between policy and 
regulatory agencies 

14(100) 0 10(71.4) 3(21.4) 8(57.1) 5(35.7) 

marginalization of some 
groups specify 

12(85.7) 2(14.3) 13(92.9) 1(7.1) 13(92.9) 1(7.1) 

political leadership 13(92.9) 1(7.1) 7(50.0) 6(42.9) 4(28.6) 10(71.4) 
 

Area 2 Demography and population change 
 

Table 3. Foresight China II: Identification and Detection of Infectious Diseases “Demography 
and population change” expert opinion 

Driver of infectious diseases? Need to surveillance? Feasibility to surveillance? elements 

Yes    No  Yes    No  Yes    No  

Immigration/migr
ation urbanization 

13(86.7) 2(13.3) 14(93.3) 0 13(86.7) 2(13.3) 

Aging population 9(60.0) 6(40.0) 7(46.7) 8(53.3) 9(60.0) 4(26.7) 

gender imbalance 9(60.0) 6(40.0) 9(60.0) 6(40.0) 8(53.3) 6(40.0) 

occupation 
changes 

11(73.3) 4(26.7) 13(86.7) 2(13.3) 12(80.0) 1(6.7) 

education 15(100) 0 11(73.3) 4(26.7) 10(66.7) 1(6.7) 

 

Area 3 Conflict 
 

Table 4. Foresight China II: Identification and Detection of Infectious Diseases “Conflict” 
expert opinion 

Driver of infectious diseases? Need to surveillance? Feasibility to surveillance? elements 

Yes    No  Yes    No  Yes    No  
Difficulties in 
maintaining 
administrative 
systems 

15(93.8) 1(6.3) 14(87.5) 2(12.5) 13(81.3) 3(18.8) 

Movement of 
refugees 

16(100) 0 11(68.8) 5(31.3) 10(62.5) 6(37.5) 
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Area 4 Technology &Innovation and their governance 
 

Table 5. Foresight China II: Identification and Detection of Infectious Diseases “Technology 
&Innovation and their governance” expert opinion 

Driver of infectious diseases? Need to surveillance? Feasibility to surveillance? elements 

Yes    No  Yes    No  Yes    No  

Ability to control 
infections control 
strategies 

15(93.8) 1(6.3) 16(100) 0 11(68.8) 4(25.0) 

New techniques of 
Information transmit 

16(100) 0 16(100) 0 13(81.3) 3(18.8) 

Drug or Pesticide 
Resistance 

14(87.5) 2(12.5) 16(100) 0 13(81.3) 3(18.8) 

Faster identification and 
diagnostics of organisms 

13(81.3) 2(12.5) 11(68.8) 3(18.8) 11(68.8) 4(15.0) 

Use of new medicine 
methods and technologies  

8(50.0) 8(50.0) 12(75.0) 4(25.0) 15(93.8) 1(6.3) 

Survival of patients with 
chronic disease 

8(50.0) 8(50.0) 9(56.3) 7(43.8) 11(68.8) 5(31.3) 

 

Area 5 Agriculture and land use change 
 

Table 6. Foresight China II: Identification and Detection of Infectious Diseases “Agriculture and 
land use change” expert opinion 

Driver of infectious diseases? Need to surveillance? Feasibility to surveillance? elements 

Yes    No  Yes    No  Yes    No  

landform and 
physiognomy 

12(100) 0 10(83.3) 2(16.7) 12(100) 0 

dense model of 
agriculture 

9(75.0) 3(25.0) 9(75.0) 3(25.0) 9(75.0) 3(25.0) 

Changing Patterns of 
Land Use 

11(91.7) 1(8.3) 10(83.3) 2(16.7) 10(83.3) 2(16.7) 

 

Area 6 Economic factors 

 
Table 7. Foresight China II: Identification and Detection of Infectious Diseases “Economic 
factors” expert opinion 

Driver of infectious diseases? Need to surveillance? Feasibility to surveillance? elements 

Yes    No  Yes    No  Yes    No  

Economics 
development level 

14(100)        0 11(78.6) 3(21.4) 7(50.0) 7(50.0) 

Income disparity  13(92.9) 1(7.1) 9(64.3) 5(35.7) 7(50.0) 7(50.0) 

Poverty             and 
Malnutrition 

13(92.9) 1(7.1) 11(78.6) 3(21.4) 11(78.6) 2(14.3) 

Unemployment 10(71.4) 4(28.6) 6(42.9) 8(57.1) 8(57.1) 6(42.9) 
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Area 7 Trade and Market related factors 
 

Table 8. Foresight China II: Identification and Detection of Infectious Diseases “Trade and 
Market related factors” expert opinion 

Driver of infectious diseases? Need to surveillance? Feasibility to surveillance? elements 

Yes    No  Yes    No  Yes    No  

Behavior, Structure of Markets 
and changing pattern of Trade 

15(100) 0   15(100) 0 14(93.3) 1(6.7) 

Demands for exotic products 13(86.7) 2(13.3)   15(100) 0 15(100) 0 

Illegal trade 14(93.3) 1(6.7)   14(93.3) 1(6.7) 8(53.3) 6(40.0) 

Trade Barriers 9(60.0) 6(40.0)   12(80.0) 3(20.0) 10(66.7) 4(26.7) 

 

Area 8 Transport and Tourism 

 
Table 9. Foresight China II: Identification and Detection of Infectious Diseases “Transport and 
Tourism” expert opinion 

Driver of infectious diseases? Need to surveillance? Feasibility to surveillance? elements 

Yes    No  Yes    No  Yes    No  

Movement of People, 
animals, 
micro-organisms 

18(100) 0 18(100) 0 18(100) 0 

Tourism 16(88.9) 2(11.1) 17(94.4) 1(5.6) 17(94.4) 1(5.6) 

 

Area 9 Human activity and social pressure 

 
Table 10. Foresight China II: Identification and Detection of Infectious Diseases “Human 
activity and social pressure” expert opinion 

Driver of infectious diseases? Need to surveillance? Feasibility to surveillance? elements 

Yes    No  Yes    No  Yes    No  

Changes in Sexual 
Practices  

14(93.3) 1(6.7) 12(80.0) 3(20.0) 11(73.3) 4(26.7) 

Changing Lifestyle 13(86.7) 2(13.3) 14(93.3) 1(6.7) 11(73.3) 4(26.7) 

Public perceptions 11(73.3) 3(20.0) 11(73.3) 4(26.7) 13(86.7) 2(13.3) 

Demands for more 
Healthy Food 

13(86.7) 1(6.7) 12(80.0) 3(20.0) 11(73.3) 4(26.7) 

Media Reporting 10(66.7) 4(26.7) 5(33.3) 10(66.7) 5(33.3) 10(66.7) 

Faith  12(80.0) 3(20.0) 14(93.3) 1(6.7) 14(93.3) 1(6.7) 
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Area 10 Environment related factors 

 
Table 11. Foresight China II: Identification and Detection of Infectious Diseases “Environment 
related factors” expert opinion 

Driver of infectious diseases? Need to surveillance? Feasibility to surveillance? elements 

Yes    No  Yes    No  Yes    No  

Environment 
pollution 

15(100) 0 12(80.0) 3(20.0) 10(66.7) 5(33.3) 

Safe of water and 
foods 

13(86.7) 2(13.3) 14(93.3) 1(6.7) 13(86.7) 2(13.3) 

Climate warm up 12(80.0) 3(20.0) 11(73.3) 4(26.7) 9(60.0) 4(26.7) 

Nature disaster 15(100) 0 15(100) 0 13(86.7) 0 

 

Area 11 Iatrogenic related factors 

 
Table 12. Foresight China II: Identification and Detection of Infectious Diseases “Iatrogenic 
related factors” expert opinion 

Driver of infectious diseases? Need to surveillance? Feasibility to surveillance? elements 

Yes    No  Yes    No  Yes    No  

Overcrowding in 
hospital 

14(87.5) 2(12.5) 14(87.5) 2(12.5) 13(81.3) 3(18.8) 

Hospital acquired 
infection 

14(87.5) 2(12.5) 14(87.5) 2(12.5) 14(87.5) 2(12.5) 

 

Area 12 Animals and plants related factors 

 
Table 13. Foresight China II: Identification and Detection of Infectious Diseases “Animals and 
plants related factors” expert opinion  

Driver of infectious diseases? Need to surveillance? Feasibility to surveillance? elements 

Yes    No  Yes    No  Yes    No  

Animal movement 15(100) 0 15(100) 0 14(93.3) 1(6.7) 

Change of animal species 15(100) 0 14(93.3) 1(6.7) 13(86.7) 2(13.3) 

Change of animal 
husbandry methods 

13(86.7) 2(13.3) 14(93.3) 1(6.7) 12(80.0) 2(13.3) 

genetically modified 
crops or animals  

10(66.7) 5(33.3) 10(66.7) 5(33.3) 11(73.3) 4(26.7) 

gene polymorphism 
decrease 

15(100) 0 11(73.3) 4(26.7) 10(66.7) 5(33.3) 
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Table 14. Foresight China II: Identification and Detection of Infectious Diseases: feasibility to 
surveillance of 12 family drivers  

12 family drivers of  
infectious diseases occurrence 

Doable Can be done Consider latter 

Bio-security governance Illegal practices Social cohesion 

international/national/regional 
interactions affecting governance 

1.Governance and social 
cohesion 

marginalization of some groups specify 

lack of interaction between policy 
and regulatory agencies 

political leadership 

Immigration migration and urbanization Aging population 

gender imbalance 

2.Demography and 
population change 

occupation changes 
Education 

3.Conflict  Difficulties in maintaining administrative 
systems 

Movement of refugees  

New techniques of Information transmit Ability to control infections control 
strategies 

Drug or Pesticide Resistance Faster identification and diagnostics 
of organisms 

4.Technology 
&Innovation and their 
governance  

Use of new medicine methods and 
technologies 

Survival of patients with chronic 
disease 

landform and physiognomy 

dense model of agriculture 

5.Agriculture and land use 
change 

Changing Patterns of Land Use 
Economics development level 

Income disparity  

6.Economic factors Poverty and Malnutrition 

Unemployment 
Behavior, structure of markets and 
changing pattern of Trade 

Illegal trade 7.Trade and Market 
related factors 

Demands for exotic products Trade Barriers 
Movement of People, animals, 
micro-organisms 

8.Transport and Tourism 

Tourism 
Public perceptions Changes in Sexual Practices  

Changing Lifestyle 

9.Human activity and 
social pressure 

Faith 
Population immune status 

Demands for more 
Healthy Food 

Safe of water and foods Environment pollution 10.Environment related 
factors Nature disaster Climate warm up 

Overcrowding in hospital 11.Iatrogenic related 
factors  

Hospital acquired infection 
Animal movement genetically modified crops or 

animals  
Change of animal species gene polymorphism decrease 

12.Animals and plants 
related factors  

Change of animal husbandry methods   

4   Discussion 

In information collection, in order to ensure quality of the research, as well as acquire 
useful information, researchers choose experts strictly according to the standard. As the 
research does not refer to sensitive personal questions, and the research is one of the 
important work that the nation matters, experts showed their interests in the research 
and been supportive and cooperative, which make sure that the result is authentic and 
reliable. To avoid information bias caused by the interviewer’s misunderstanding, there 
are extra explanations for some special content in the consultative questionnaire for 
experts, and the interviewers are trained, examined and given a uniform notice. 

At present, people are facing new situation of epidemical occurrence and prevalence, 
especially new epidemics are found continually. Human behavior, society and natural 
environment differ from the past [13-14]. Present epidemic monitoring system apply 
biomedical mode, mainly depends on case report and laboratory diagnosis, can not 
discover epidemical occurrence and prevalence in time.  As people’s acquaintance of 
disease turned from biomedical mode into the “biology-medicine-society-environment” 
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medical mode, the view of influencing factors of epidemical occurrence and prevalence 
becomes to be the affection to epidemical occurrence and prevalence caused by economy 
and social development. 

Pathogen, host and environment in the “epidemiological triangle” are the biological 
basis of epidemic occurs and prevail in public. America started the early warning of the 
West Nile Virus infection according to death monitoring of the animal host and 
mediator, explained that epidemic monitoring system help monitor influencing factors 
of epidemical occurrence and prevalence, find abnormal conditions, send out early 
warning and start epidemic control. 

Therefore, this research suggests China put feasible factors among the major 
influencing factors of epidemical occurrence and prevalence into epidemic monitoring 
system. Except reports from hospitals and laboratories, related department should put 
more attention into the change of the major influencing factors of epidemical 
occurrence and prevalence, as well as analyze it, so as to find and control epidemic 
occurrence and development in time, enhance the early warning function of the 
epidemic monitoring system. 
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Abstract. Effective Public Health Emergency Preparedness (PHEP) requires 
integrated information systems supporting key PHEP activities, including 
surveillance, alerting, situational awareness, emergency planning and response, 
resource assessment and management. These systems are optimized when 
embedded within an informatics framework supporting a community of 
information trading partners engaged in routine health information exchange. 
Seasonal influenza (flu) in the USA typically peaks in January-February and 
accounts for over 200,000 hospitalizations and 36,000 deaths annually. 
Vaccination is the primary method of prevention and the optimal preseason 
time for vaccination is September-November. The October 5, 2004, 
announcement of significant influenza vaccine shortfalls triggered a national 
PHEP event, requiring a full array of integrated and heightened PHEP activities 
at the state and local levels. The presence of an established integrated 
informatics framework for health information exchange in NY State conveyed 
significant advantages in advanced preparedness and just-in-time response to 
the event. This paper describes how the framework supported and enhanced the 
efficacy of NY’s response to a real-life hazard, details related performance 
metrics, and presents lessons learned from the response. 

Keywords: Health Preparedness Informatics Surveillance Response Influenza 
vaccine shortage. 

1   Introduction 

Public Health Emergency Preparedness (PHEP) is a process of reaching a sustainable 
state of “readiness to act” as part of the essential public health activities practiced by 
health departments daily [1,2,3]. Effective PHEP requires integrated information 
systems supporting a spectrum of key routine public health activities, including 
surveillance, event detection, alerting, situational awareness, emergency planning and 
response, resource assessment and management. These systems are optimized when 
embedded within an established informatics framework supporting a broad-based 
community of health information trading partners engaged in routine information 
exchange [1,2,3]. 
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An established integrated informatics framework for health information exchange 
conveys significant advantages in advanced preparedness and just-in-time response to 
actual health events. This work describes how such a framework supported and 
enhanced the efficacy of a state’s response to a real-life and real-time PHEP event: 
the 2004 national influenza vaccine shortage. We also present details on related 
performance metrics and lessons learned from the event response. 

1.1   Background and Events Leading to the National Influenza Vaccine 
Shortage PHEP Event 

Seasonal influenza (flu) in the USA typically accounts for over 200,000 
hospitalizations and 36,000 deaths annually. Vaccination is the primary method of 
prevention and the optimal time for vaccination is September-November, in advance 
of the typical peak in flu activity in January-February [4].  The 2003-2004 flu season, 
one year prior to the shortage, was atypically severe. The onset of peak influenza 
activity occurred over November-December 2003. Influenza-related morbidity 
indicators (e.g., hospitalizations) and mortality were 2-3 times that observed in 3 
previous flu seasons. The season was also associated with a 2-3 fold increase in 
influenza-related pediatric hospitalizations and deaths [5,6,7]. The publicity 
surrounding the deaths and the severity of the flu season increased demand for 
vaccine, resulting in some localized shortages [8]. In October 2004, influenza-
associated pediatric deaths became a nationally notifiable condition [6]. The details 
leading up to the national vaccine shortage are available in federal reports [9]. In 
brief, it began on October 5, 2004, when production problems in a major vaccine 
manufacturer, Chiron, cut the U.S. supply of vaccine in half. The heightened demand 
for vaccine following the 2003-2004 season and the timing of the shortage led to the 
proverbial ‘perfect storm’ of emergency conditions. 

The event response covered the spectrum of PHEP activities. The CDC’s plan 
consisted of two phases [9]. Phase I began on October 12, 2004, when the CDC 
released limited vaccine orders, previously placed with alternate manufacturers, for 
providers and health care facilities according to estimates of risk group needs. In 
November 2004, CDC Phase II required States to place statewide orders for vaccine 
to meet priority risk group needs unmet by Phase I and other deliveries made prior to 
the shortage. States had to activate emergency response plans to: 1) assess vaccine 
availability through previous orders and CDC Phase I; 2) assess unmet priority risk 
group vaccine needs across health care facilities, updating as the situation changed; 3) 
analyze and estimate vaccine to be ordered through CDC Phase II, updating as the 
situation evolved; 4) develop a statewide allocation and distribution plan for LHDs 
and health care facilities, based on the order placed with CDC, updating as the 
situation changed in the field. This, by implication, required rapid communication, 
coordination, and assessment of needs and supplies across local health departments 
and health care facilities within their jurisdiction. As the shortage occurred at the 
optimal time for vaccination, the potential existed for heightened influenza activity in 
the coming flu season, requiring heightened surveillance for influenza activity as well 
as increased monitoring of health care resources, such as bed availability and 
Emergency Department traffic. There was an absolute and urgent need for statewide 
situational awareness by decision makers across all information flows related to the  
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Table 1. NY State Health Commerce System (HCS) Demographics and Usage as of July 2008 
 

Organization or  User Group Number Users 

Clinical or Environmental Labs 1,329 5,455 
Clinics and Treatment Centers 1,498 2,582 
Home and Adult Care Facilities 1,658 9,749 
Hospitals 230 14,665 
Local Health Departments (LHD) 58 6,230 
MDs and Practices - 29,692 
NYSDOH Central Health Office 1 3,942 
NYSDOH Regional Health Offices 4 1,133 
Nursing Homes 663 11,025 
Other Clinical Practitioners and Practices - 10,865 
Pharmacies 1,113 3,173 
Other Organizations - 6,272 
Usage Statistics   
250 applications  
6,500 User logins per day  
550,000 access hits per day  
10 Gbytes in transactions per day 

  

 

LHDs include NY City Department of Health and Mental Hygiene. Other clinical practitioners 
include dentists, veterinarians, nurse practitioners. Other organizations include schools, fire and 
EMS, federal and state agencies, tribal nations, managed care organizations, etc. Organization 
counts are by physical facility. 

 
event. There was an equally critical need for rapid distribution of communiqués 
related to vaccine recommendations, allocation response plans, and alerts of local or 
statewide increases in influenza activity. 

1.2   Informatics Framework and Information System Infrastructure Used in 
Response to Event 

Over the past 13 years the NY State Department of Health (NYSDOH) has evolved 
both an informatics framework and a strategic information infrastructure to support 
information exchange with its health information trading partners. The infrastructure, 
Health Commerce System (HCS),  is a secure, web-enabled portal supporting  
information exchange with all regulated health entities in NY [1,2,3,10]. The 
demographics and organizations using the HCS are shown in Table 1. The 
applications within the HCS support a broad range of health-related activities, from 
vital records and health care quality assurance and finance to disease registry and 
condition reporting, statewide communicable disease and laboratory reporting, 
arbovirus surveillance, child health insurance reporting, managed care, even 
prescription pad orders. The data and information flow within the HCS are shown in 
Figure 1. Given this mission, the HCS architecture is multi-tiered, highly available, 
and capable of full off-site disaster recovery. HCS is a platform well suited for 
response to public health emergencies, given its existing architecture and routine use 
by partner organizations involved in the response [1,2,3,10].  
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Fig. 1. NYS Health Commerce System Architecture and Functions Used in Response to the 
2004 – 2005 National Influenza Vaccine Shortage 

Thus an array of core PHEP information systems has evolved within the HCS to 
support health preparedness and response in NY. These are integrated with systems 
supporting core public health activities, such as statewide electronic disease and 
laboratory reporting. Representative PHEP systems are described in Table 2 (see also 
Figure 1). The HCS preparedness systems have supported statewide response to 
emergent infectious disease events, emergency disaster declarations, health resource 
shortages, elevated national threat levels, and high-profile security events [1,2,3]. The 
HCS infrastructure is also an integral component of NYSDOH incident management 
and PHEP plans [2].  

2   Response to the Vaccine Shortage PHEP Event 

2.1   Established Preparedness Systems and Surveillance in Place in Advance of 
the Event 

The PHEP systems as listed in Table 2, or analogues thereof, were in operation in 
advance of the vaccine shortage and had  been used in a number of preparedness drills 
and other PHEP events occurring before October 2004 [2]. The systems supporting 
the preparedness and response to the shortage included: Hospital Emergency  
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Table 2. Example Health Preparedness Functions and Systems Used in the NY State Health 
Commerce System 

Generic 
Preparedness 
Function 

Statewide Data System on NYSDOH HCS 
 

Health Facility 
Surveillance, 
Dynamic Resource 
Reporting and 
Response 

HERDS (Hospital Instance) 
Dynamic, multitasking system supporting live data feeds for 
electronic surveillance, surveys, resource and asset tracking, surge, 
bed availability, patient tracking. and emergency response in 
hospitals 

CDESS  
Statewide system for reporting of disease cases by LHDs; includes 
contact tracing and integration with ECLRS 

 
Local Health Disease 
Reporting and 
Epidemiological 
Response HERDS (County Instance) 

Dynamic, multitasking system supporting live data feeds for 
surveillance and survey distribution and return for LHDs  

IHANS 
Provides health alerting and notification using automated phone, 
cell, fax, e-mail, and web postings; integrated with ComDir 

 
Alerting and 
Communication 

ComDir 
Central directory of role and contact information for all HCS 
participants; maintained by coordinators at participant HCS 
organizations 

 
Laboratory Reporting 

ECLRS 
Supports automated and manual electronic reporting of clinical 
test results from clinical, public, and national commercial labs to 
CDESS 

Executive Dashboard (EDB) 
Access-limited system providing high-level situational awareness 
to key decision maker roles across response partner organizations; 
integrates multiple data streams (HERDS, CDESS) into graphical 
displays 

Event WebSite 
A  we site within the HCS providing information postings and 
updates to entire HCS community during an event 

 
Data Visualization 
and Situational 
Awareness 

Secure file viewer and collaboration dashboard system 
Supports secure ‘push’ of static content to targeted roles and 
organizations; also used to support discussion forums between 
organizations and incident command involved in the event 

HCS – NYSDOH Health Commerce System; HERDS – Health Emergency Response Data 
System; CDESS – Communicable Disease Electronic Surveillance System; IHANS – 
Integrated Health Alerting and Notification System; ComDir – Communications Directory; 
ECLRS – Electronic Clinical Laboratory Reporting System; LHD – Local Health 
Department 
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Fig. 2. Series of Statewide Aggregate of Hospital-Reported Bed Availability by Bed Type 

 
Response Data System, or HERDS (see [1,2], Table 2), the Integrated Health Alerting 
and Notification System, or IHANS (see [1,2], Table 2) and the dashboard-secure 
collaboration form (see [1], Table 2). The HERDS system is currently  deployed to all 
LHDs, nursing homes, adult- and home-care entities, and schools statewide. At the 
time of the vaccine shortage, HERDS was in routine use by all hospitals. HERDS 
prototypes were deployed to LHDs and nursing homes during the shortage. The 
interrelationship of these systems within the HCS is shown in Figure 1. 

In response to elevated national threat levels in June 2003, NYSDOH used the 
HERDS system to implement ongoing statewide hospital bed availability and 
Emergency Department patient traffic reporting. The reporting system provided 
statewide, facility-specific surveillance of bed availability by specialty type (e.g., 
adult and pediatric, ICU, medical, surgical, burn, observational) and monitoring of 
ED patient admission traffic (e.g. see Figure 2). In response to the atypical severity 
and elevated pediatric hospitalizations and deaths associated with the 2003-2004 flu 
season, HERDS was used to establish an ongoing statewide hospital-based pediatric 
influenza surveillance system in early December 2003, one year prior to influenza 
becoming a nationally notifiable condition. The surveillance system reported facility-
specific laboratory-confirmed cases of pediatric influenza admissions and deaths.  
An influenza vaccine inventory survey was also deployed in December 2003 to all 
hospi-tals. Bed availability reports during the 2003–2004 flu season corroborated the 
information received on elevated ED traffic or specialty bed utilization (e.g., ICU), 
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potential indirect surrogates to any general increase in influenza activity that year. As 
part of preparedness planning for the 2004 Republican National Convention in New 
York City, NYSDOH used the HERDS system to deploy a statewide survey of hospital 
critical assets in August 2004. The survey was an exhaustive inventory of currently 
staffed and surge-capacity beds by specialty: special treatment capacities (e.g., trauma 
and burn center, hyperbaric, decontamination); transportation capacities; durable and 
fixed equipment (e.g., adult and pediatric ventilators, cardiac monitors); personal 
protective equipment and pharmaceutical inventory; staff capacities by specialty; 
communication and generator capacities. The survey also included staff influenza 
vaccination rates. Much of this data is also essential to resource allocation and response 
to a local or large-scale influenza outbreak. Thus, as events turned out, in 2003 and 2004 
NY State was using its PHEP systems to establish the surveillance and resource 
inventory activities that would be key in responding to the 2004 vaccine shortage. 

2.2   Preparedness Response to the Event 

To respond to the vaccine shortage, NY State needed to: 1) assess and update data on 
vaccine inventories, orders, and needs for priority risk groups in the state; 2) develop 
ordering requirements for CDC Phase II; 3) develop an in-state allocation and 
distribution plan based on up-to-the-minute data; 4) assure rapid and effective 
communication with LHDs and health facilities; 5) monitor the effects of increased 
influenza activity or hospital utilization due to vaccination shortfalls; 6) detect local 
increases in influenza activity; 7) assure overall situational awareness for NYSDOH 
executive incident command process and for external response partners. A detailed 
timeline of these activities is presented in Table 3.  

2.2.1   Vaccine Assessment and Allocation Plan 
Within 24 hours of the Chiron announcement, NYSDOH alerted its LHD and health 
care partners to the new vaccine priorities and provided guidance. Seven days later a 
complete statewide assessment of hospital vaccine needs was deployed and completed 
within 24 hours. Within 14 days NYSDOH decision makers had a complete picture of 
vaccine inventories, orders, and needs across hospitals and other health care facilities 
statewide. For facilities not using HERDS, gathering data was laborious and time 
consuming. However, by mid-November prototype HERDS instances were deployed 
to LHDs and nursing homes, allowing turnaround time similar to that for the hospital 
HERDS surveys. Within 9 days of the beginning of CDC Phase II, NYSDOH had 
developed a statewide, data-driven vaccine allocation plan and placed its vaccine 
orders with CDC. With the full electronic deployment of survey capability across 
facility types, NYSDOH was also able to update needs assessments continuously 
throughout November and December. In the case of the hospital HERDS reports, NY 
State was again able to initiate and turn around complete statewide surveys within 24 
hours for the November and December vaccine updates.  

2.2.2   Health Care Monitoring and Influenza Surveillance 
The potential for ED overcrowding due to the impact of the vaccine shortage on 
influenza activity in the impending flu season was recognized early on. Facilities were 
alerted in October, well in advance of the onset of the flu season, as to the need to  
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Table 3. Timeline of Events, Actions, and Response Milestones during the National Influenza 
Vaccine Shortage, October-December 2004 
 

Date Public Health Action Description/Purpose/Outcome 

Ongoing 
since 
June 
2003 

Hospital bed 
availability and 
emergency department 
patient admission 
traffic surveillance 

HERDS monitoring of hospital bed 
availability by specialty type and patients 
waiting in the Emergency Department. 
Situational awareness available to state, 
regional and local health offices as 
information is reported. 

OCT 5 Influenza vaccine 
shipments from 
Chiron suspended 

US vaccine supplies reduced by 
approximately one-half. 

OCT 6 

 

IHANS Health 
Alert/Notification  

Official NYSDOH Commissioner 
Communiqué to LHDs and hospitals with 
new CDC vaccination guidelines and the 
rationale for vaccinating by priority groups. 

OCT 12  Phase I CDC Plan 
(see [9]) 

CDC ships previously held orders; to be 
administered to high-risk groups. 

OCT 12 

 

First hospital vaccine 
needs assessment and 
inventory survey 
deployed statewide 

 

IHANS Health 
Alert/Notification 

HERDS survey on hospital vaccine and 
antiviral inventories, orders, and needs by 
risk (priority) group. 90% of hospitals  
(213/237) respond within 24 hours.  
 

Sent to all LHDs and hospitals; provided 
survey notification; vaccine distribution plan; 
treatment and infection control guidelines for 
respiratory outbreaks. 

OCT 14 First vaccine survey of 
nursing homes, home 
healthcare, diagnostic 
and treatment centers  

Surveys per hospital vaccine assessment. 
Reporting occurred via phone and file upload 
to HCS surveys as HERDS had not been 
deployed to these facilities. 

OCT 19 NYSDOH Incident 
Command decision 
makers have full 
picture of vaccine 
needs 

Situational awareness provided through 
Health Commerce System (HCS) data 
visualization system, based on data derived 
from hospital survey of OCT 12 and other 
facilities surveyed on OCT 14. 

OCT 20 First update to 
situational awareness 
for external partners 

Regional Health Offices, LHDs apprised of 
vaccine inventories and needs by risk group 
in their health facilities (based on data from 
OCT 14 surveys and HERDS).  
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Table 3. (continued) 

OCT 26 Health Alert sent to all 
hospitals statewide 

Official NYSDOH Commissioner 
Communiqué relaying potential for hospital 
overcrowding and guidance on ED 
preparedness and respiratory precautions.  

NOV 5 Alert Notification on 
total vaccine shipped 
to date. 

LHDS and Regional Health Offices notified 
that reports CDC Phase I vaccine shipments 
to facilities within their jurisdiction are 
available on the collaboration dashboard.  

NOV 8 First HERDS-p LHD 
Vaccine Needs and 
Inventories Survey  

.  

HERDS-p application prototype was 
deployed to LHDS for vaccine needs 
assessment. 95 % (54/57) of LHDs respond 
on deadline, within 24 hours.  

NOV 9 

 

Situational awareness 
update to external 
partners 

LHDS and Regional Health Offices notified 
via IHANS that additional reports on CDC 
Phase I vaccine shipments are available on 
the collaboration dashboard system.  

NOV 9 Second hospital 
vaccine needs and 
inventory survey 

90% of hospitals statewide respond to 
HERDS survey on vaccine needs by priority 
risk group within 24 hours. 

NOV 16 First HERDS-p 
vaccine  survey of 
nursing homes 

HERDS application prototype was deployed 
to nursing homes for vaccine needs 
assessment. 

NOV 17 CDC Phase II vaccine 
allocation plan [9] 

States able to place orders for vaccine for 
priority group needs unmet by CDC Phase I. 

NOV 26 Vaccine allocation 
plan complete 

Statewide vaccine allocation and distribution 
plan is complete and order placed. Plan based 
on all data gathered from LHDs, hospitals, 
nursing homes, adult care entities. 

NOV 29 Alert  notification to 
LHDs that hospital 
vaccine plan available 

Official NYSDOH Commissioner 
Communiqué relays details of the hospital 
vaccine allocation plan and of related data 
available  to LHDs on the collaboration 
dashboard system. 

NOV 30 Alert notification to 
hospitals on vaccine 
allocation 

IHANS notifies hospitals that vaccine 
shipment allocations/schedule are available 
on the collaboration dashboard system. 
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Table 3. (continued) 

DEC 2 Alert notification to 
LHDs on vaccine 
allocation 

Reports on vaccine doses allocated by LHD, 
in addition to the hospital allocation 
announced on NOV 30, are available on 
collaboration dashboard.  

DEC 4 Enhanced influenza 
surveillance deployed 
to all hospitals in 
HERDS  

Ongoing reporting of laboratory confirmed 
influenza related hospital admissions by age 
group. Situational awareness regarding these 
admissions available to state, regional, and 
local health offices as reported. 

DEC 18 
and 
DEC 20 

Follow-up needs 
surveys for LHDs, 
nursing homes, and 
hospitals  

NYSDOH Incident Command has access to 
data as reported; 90% of hospitals respond 
within 24 hours. 

DEC 22 Situational awareness 
for external partners 

Updated hospital and nursing home vaccine 
needs and allocations provided to LHDs 
through the collaboration dashboard system. 

 
follow preparedness and HERDS surveillance procedures (Table 3). HERDS data 
reported by health facilities is accessible by State, regional, and local health 
departments as it is reported. Thus the HERDS bed availability survey, which tracked 
both bed utilization and ED patient traffic and had been in place since June 2003, 
allowed for detailed tracking and trending by aggregate, local, or facility-specific 
views during the 2004-2005 flu season (see Figure 2). This data stream, in 
combination with the baseline data of the HERDS critical asset survey (August 2004), 
allowed health officials at all levels to monitor, confirm, or rule out any indications or 
external  (anecdotal)  reports of  ED or hospital overcrowding. At the statewide aggre- 
aggregate level, there was an increase in bed utilization (decreased availability) and 
ED traffic in early January 2004 (Figure 2). 

In response to concerns over increased influenza activity, the HERDS-based 
pediatric hospital influenza surveillance initiated in the previous influenza season 
(2003-2004) was expanded to include laboratory-confirmed influenza admissions for 
all age groups and deployed in December 2004 (Table 3). Again, having the 
surveillance process in place from the previous season and a single common reporting 
interface (HERDS) greatly facilitated the reporting process and also provided an 
integral location for reviewing reporting streams. Notably, the increase in state-
aggregated reports of hospital admissions for laboratory-confirmed flu in early 
January correlated with increased patients waiting in the ED and decreased bed 
availability (Figures 2, 3). 

2.2.3   Situational Awareness 
The IHANS alerting system served four roles in NY’s efforts to provide situational 
awareness to external response partners: supporting advance preparedness; directly 
providing event-related content; notifying partners of the availability of new (or updates  
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Fig. 3. Time Series of Statewide Aggregate Hospital Reports of Laboratory- Confirmed 
Influenza Hospital Admissions by Age Group 

 
to) analytic products on the dashboard system; and notifying both organizations and 
health officials that HERDS surveys had been activated (see Table 3). The support of 
advance, or just-in-time, preparedness is illustrated by the Health Commissioner Alert 
of October 26, 2004 (Table 3). Advance recognition of the potential for increased ED 
overcrowding due to increased influenza activity led to a health alert being sent to health 
facilities to review ED overcrowding preparedness plans, institute respiratory 
precautions, and keep up to date with HERDS surveillance guidances. 

In total, 28 health alerts related to influenza were sent using the IHANS system 
during October-December 2004. The topics ranged from vaccination recommendations 
to updates on the shortage, state and federal response plans, influenza activity updates, 
priority risk group recommendations, and collateral impacts of the shortage. The target 
audiences included LHDs as well as the health facilities (e.g., hospitals, nursing homes, 
individual providers) using the HCS system. Other alerts sent from IHANS (e.g., 2) 
were used to notify response partners as to the availability of data visualization products 
on the collaboration dashboard and the activation of surveys in HERDS.  

Access to situational awareness data for external response partners was provided 
through reports, charts, and graphs derived from the HCS data visualization system 
and provided through the collaboration dashboard forum. These products provided 
information, in both aggregate and detail, integrated across the various data streams 
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and allocation plans related to the event (Table 3). The collaboration dashboard also 
allowed for electronic dialogue between state and local health departments regarding 
the data available on the dashboard. As shown in Table 3, throughout the event 
external response partners were able to access information related to vaccine needs 
across facility types, vaccine shipments, and allocations within jurisdiction. While all 
health organizations had access to HERDS data as it was reported, customized 
summaries of HERDS data feeds were also provided through the collaboration 
dashboard. HERDS data feeds are also available through the HCS GIS system, 
allowing spatial trending and drill-down access to facility-specific detail regarding 
surveillance data, bed availability, available assets, and vaccine needs. 

3   Conclusions and Lessons Learned 

The 2004–2005 vaccine shortage preceeded by the severe 2003–2004 flu season was 
exactly the type of PHEP event on which public health preparedness programs focus: 
“unexpected/without warning, national implications, widespread public anxiety and 
fear of illness and death” [10,11]. The presence of an established integrated 
informatics framework for health information exchange and PHEP in NY State 
conveyed significant advantages in advanced preparedness and just-in-time response 
to this health event. The key PHEP benefits of having this framework include: a 
demonstrable state of response readiness; rapid establishment and maintenance of 
situational awareness across response partners through just-in-time dynamic 
information-gathering activities; effective communication and coordination of a broad 
spectrum of response activities; rapid development and implementation of a data-
driven response plan.  

Lessons learned from the event response include the following: 
 

• PHEP readiness is optimized when supportive information systems are embedded 
within an established, dual-use, informatics framework, such as the NYSDOH 
HCS system. HCS supports a broad-based community of health information 
trading partners who become response partners in a PHEP event. Among the many 
advantages of the system are economy of scale, familiarity with and trust of the 
system, common and standardized usability, depth and breadth of partner 
organization inclusion and communication, data integration, and new opportunities 
for synergies and linkage. 

• Systems such as HERDS [2]—which support rapid, integrated, and flexible 
deployment of ongoing surveys across the universe of health care facilities and 
partners—are ideally suited to emergent PHEP events. Establishing the system as 
common practice through routine surveillance heightens both state and local ability 
to respond, as does gaining the routine participation of the many health care 
organizations whose help would be needed to respond to an emergency. 

• A key lesson learned from the vaccine shortage was the advantage of involving all 
types of health organizations in preparedness systems. Early on in the event, key 
organization types (nursing homes, adult care facilities, and LHDs) had access to the 
HCS system but were not instantiated within the HERDS system. This resulted in the 
need for intensive out-of-band processing and manual work to capture and integrate 



54 I.J. Gotham et al. 

reports from these organizations. This was in contrast to hospitals, already 
established in HERDS, which were reporting on surveillance activities as well as 
turning around vaccine needs surveys within 24 hours. The scenario changed midway 
through the event, as new HERDS prototypes were deployed to LHDs and nursing 
homes. In response to its after-action analysis of the event, NYSDOH took two major 
steps to address the issue. First, it engaged a process to deploy the HERDS system to 
all regulated health facility organizations in NY, including rollout and training. 
Second, it created a new regulation requiring all health facility organizations in NY 
to maintain a cadre of skilled HCS users, maintain up-to-date contact information in 
the communications directory (Table 2), and use the HERDS system. As of this date 
all hospitals, nursing homes, adult and home care facilities, and schools utilize 
HERDS for surveillance and routine reporting. Other organizations in progress 
include clinics, clinical labs, and pharmacies. 
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Abstract. Salmonella is among the most common food borne illnesses
which may result from consumption of contaminated products. In this
paper we model the co-occurrence data between USDA-controlled food
processing establishments and various strains of Salmonella (serotypes)
as a network which evolves over time. We apply a latent space model
originally developed for dynamic analysis of social networks to predict
the future link structure of the graph. Experimental results indicate pre-
dictive utility of analyzing establishments as a network of interconnected
entities as opposed to modeling their risk independently of each other.
The model can be used to predict occurrences of a particular strain of
Salmonella in the future. That could potentially aid in proactive moni-
toring of establishments at risk, allowing for early intervention and mit-
igation of adverse consequences to public health.

Keywords: Link analysis, latent space models, social networks, food
safety surveillance, risk based inspection.

1 Introduction

In the United States, about 40, 000 cases are reported annually including 400
deaths from acute Salmonellosis (CDC, 2008). These statistics are observed de-
spite widespread efforts of federal and local food safety offices aimed at mitiga-
tion of the involved risks to public health. Some of these efforts consider using
routinely collected data to monitor and predict outcomes of microbial testing
of food samples taken at processing facilities. The analytic techniques used so
far (FSIS, 2008; Roure et al., 2007b; Roure et al., 2007a) focus on utilizing pre-
dictive models developed for the individual establishments under assumption of
independence. In this paper, we evaluate utility of a network-based approach in
which individual establishments are treated as entities in a network, intercon-
nected via links corresponding to occurrences of specific serotypes of Salmonella
observed at them.

Link structure learning algorithms have been proven useful in a variety of
applications based on a social network paradigm (Madadhain & Smyth, 2005;
Breiger et al., 1975). Recently, there were a few attempts to use them in the
context of bio-security (Dubrawski et al., 2008; Reis et al., 2007). In this paper we
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apply DSNL (Sarkar & Moore, 2005), a latent space model originally developed
for dynamic social network analysis, to predict occurrences of specific serotypes
of Salmonella at food processing establishments.

In the proposed framework, the historical record of positive results of micro-
bial tests for Salmonella, conducted at individual food production facilities, is
used to construct a bipartite graph. Nodes of this graph represent respectively
the individual facilities and the specific Salmonella serotypes. A facility node is
linked with a serotype node if the particular type of Salmonella was isolated at
the given plant during the period of observation. The hypothesis being tested
is that the observed networking of facilities through serotype occurrences and
can be predictive of the future microbial safety performance. To test it, we split
the available historical data into independent training and test subsets in order
to objectively measure prediction accuracies. We also compare our results with
a baseline which only considers histories of individual establishments, indepen-
dently of each other, to make predictions. Any gain of the predictive accuracy
of the proposed approach over the baseline would indicate the potential utility
of the network based approach in predicting the risk of future occurrences of
microbial contamination in specific food processing establishments.

The details of the used real-world datasets, the experimental setup, and the
obtained results are presented in a separate Section of the paper. The next
Section briefly explains DSNL, the dynamic social network model used in the
experiments.

2 Dynamic Social Network in Latent Space Model

In this section we briefly describe the network model and the algorithm used to
train it (more details can be found in (Sarkar & Moore, 2005)). (Raftery et al.,
2002) defined a latent space model which associates each entity with a location
in a p-dimensional Euclidean space. The idea is that entities close in the latent
space are more probable to form a link in the network. (Sarkar & Moore, 2005)
generalized this static model to a Dynamic Social Network in Latent space model
(DSNL). It is designed to explain changes of relationships between entities over
time by allowing the latent coordinates to change smoothly over time. The main
idea is to associate each link with a discrete timestep. The entities can move
in the latent space between consecutive timesteps, but large moves are deemed
improbable.

Let Gt be the graph observed at timestep t. The latent position of entity i
at timestep t is denoted by the ith row of the n × k positions matrix Xt. The
model uses standard Markov assumption (Figure 1), similar to that widely used
in Hidden Markov Models or Kalman Filters. It also involves two probability
distributions. One generates Gt from Xt such that links between pairs of entities
which are far away in the latent Euclidian space are less probable. The other
distribution generates Xt+1 from Xt, and controls the smoothness of transition.
These distributions also aid in tractable learning of the maximum likelihood
estimates of the latent positions of the entities. We want:
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Fig. 1. Structure of the DSNL model

Xt = arg max
X

P (X |Gt, Xt−1) = arg max
X

P (Gt|X)P (X |Xt−1) (1)

2.1 Model Description

The log-likelihood form of of the model equation (1) decomposes into two parts,
i.e. log P (Gt|X)+logP (X |Xt−1). The first part, the observation model, measures
how well the latent coordinates explain the observed graph. The second part,
the transition model, penalizes large changes from the latent positions learned
in the last timestep.

Denote the distance between entities i and j at timestep t as dij . Then,
radius parameter ri is introduced for each entity i. The value of this parameter
can be learned from data. It captures the relative importance of an entity in the
network. rij equals greater of the radii of entities i and j. The probability of a
link between entities i and j is then estimated as:

pij =
1

1 + e(dij−rij)
(2)

The probability that graph Gt was generated from coordinates Xt, that is the
observation model, is therefore given by the following:

p(Gt|Xt) =
∏
i∼j

pij

∏
i�∼j

(1 − pij) (3)

Apparently, it is possible to eliminate quadratic computation of the observa-
tion model over all pairs of links by introducing a biquadratic kernel. As a result
of this simplification, two entities have high probability of linkage only if their
latent coordinates are within the radius rij of one another. Beyond this range
there is a constant noise probability of linkage.

The transition model used is simply Gaussian:

Xt ∼ N (Xt−1, σ
2)

The parameter σ controls the smoothness of transition, that is large values of σ
allow large changes of latent coordinates of the entities from one timestep to the
next.
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2.2 Algorithm Description

The optimization algorithm has two-phases. First, the latent coordinates are
initialized by a time-dependent variation of the classical multidimensional scaling
(Borg & Groenen, 1997). The solution combines the evidence from the current
observation, and the last timestep’s locations. These estimates are then used to
initialize the non-linear optimization.

Classical multidimensional scaling (MDS) takes as input an n × n matrix of
non-negative distances D where Dij denotes the target distance between entity
i and entity j. It produces an n × p matrix X where the ith row is the position
of entity i in p-dimensional latent space. Let the coordinates of n points in a p
dimensional Euclidean space be given by xi, (i = 1 : n) where xi = (xi1, ..., xip).
Without delving into much detail, MDS transforms the pairwise distance matrix
D into a similarity matrix D̃ using linear transformations. The solution is given
by the following formula in which F denotes Frobenius’ metric:

X = arg min
X

|D̃ − XXT |F (4)

In order to incorporate temporal smoothness into this objective (Sarkar & Moore,
2005) proposed to minimize the following objective function:

Xt = arg min
X

|D̃t − XXT |F + λ|XXT − Xt−1X
T
t−1|F (5)

The first part of it is identical to the standard MDS objective. The second
part encourages small changes in pairwise distances between two consecutive
timesteps. The parameter λ controls the relative importance of the past and
present evidence. The above optimization problem has a closed form solution:

XtX
T
t =

1
1 + λ

D̃t +
λ

1 + λ
Xt−1X

T
t−1 (6)

Xt can be obtained via eigen-decomposition of the right hand side of (6). It is
possible to compute Xt using an iterative solver in O(n2f + n + pn) time per
iteration, where n is the number of entities, p is the number of latent dimensions,
and f is the fraction of non-zero entries in the underlying matrix.

The solution (6) becomes the starting point of a nonlinear optimization for the
next time step using conjugate gradient. Due to the use of the biquadratic kernel,
the computation of gradient of the likelihood only needs to consider entities that
lie within one another’s radius. This eliminates the need for iterating over all
pairs of entities and the computations can be executed efficiently using KD-trees
(Preparata & Shamos, 1985) in O(rn + n logn) time, where r is the average
number of in-radius neighbors.

3 Experiments

The objective of the experiments summarized below is to evaluate the utility of
exploiting the structure of connectivity between food establishments and strains
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(serotypes) of Salmonella, in predicting occurrences of a particular strain of
Salmonella in the future. The assumption being made states that if the two (or
more) establishments share a historical pattern of co-occurring strain-specific
isolates, we should expect them to be linked in a similar way in the near future,
provided that the environmental drivers of the underlying processes remain sta-
tionary. If the assumption holds, the proposed approach could become a useful
part of the risk-prediction toolkit in the food safety domain.

To evaluate the performance of the proposed method we chose a baseline
algorithm which predicts two entities to share a link if the weighted average of
their co-occurrences over the past timesteps is high. In this baseline model we
exponentially down-weigh the evidence from older data. Note that the baseline
only looks at the individual establishment’s history of isolates, and does not
model transitivity of similarity like th network model does.

The data used in our experiments is an excerpt of the record of regulatory
sampling of food for Salmonella conducted at a subset of USDA regulated es-
tablishments from January 2005 till December 2007. Each record in this data
represents a positive result of a microbial test of a sample of food taken at a
specific establishment. The data includes the information of the specific serotype
of the isolated Salmonella. It consists of over 7,000 records of positive tests in-
volving about 750 unique establishments and over 90 unique serotypes.

The training data is used to build bipartite graphs of connections between
establishments and serotypes. If a specific serotype was observed at a specific
establishment during a period of observation at least once, these two entities
will be linked in the graph. The network model is trained using data arranged
in two observation periods corresponding to years 2005 and 2006. The trained
model is then used to predict links between establishments and serotypes over the
period of 2007. The predictions are then compared with the actual observations
recorded in the test data. On the average in each year the data included around
400 unique establishments, 70 serotype entities, and 1, 000 links between the
establishments and the serotypes.

Consider the following scenario: the analyst has a historical record of Salmonella
positives isolated at various establishments during two or more past periods of ob-
servation (years). Now for any given establishment she can use the trained network
model to predict the top k% most likely serotypes which might be observed at that
establishmentduring the subsequent period of time.A symmetrical questionwould
be: for a given serotype of interest, recommend the k% establishments which are
most likely to record such isolate during the next period of time. Predictive util-
ity of the proposed method in answering such questions can be easily quantified in
terms of the AUC (Area Under the ROC Curve) scores and recall scores obtained
by comparing the probabilities estimated using the model and the actual links ob-
served in the test set.

In order to address the first of the two questions, for each establishment we
rank the predicted probabilities of occurrence of every serotype according to
DSNL model and, separately, according to the baseline model. From these rank-
ings we can compute: (1) AUC scores; and (2) Fractions of the true links between
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(A) (B)

Fig. 2. A. Distribution of AUC scores and B. Average recall values for the top k% of
ranked serotypes for establishments.

(A) (B)

Fig. 3. A. Distribution of AUC scores and B. Average recall values for the top k% of
ranked establishments for serotypes.

the establishment and serotypes among the top k% of the serotypes ranking lists
produced by the respective models. The AUC scores measure the overall ability
of a model to produce rankings aligned with the actual observations recorded in
the test data. The recall scores provide a similar indication for the alignment of
the highest ranking predictions. Such scores may make more sense than AUCs
in practical situations whenever constraints on investigative resources limit the
analysts to inspecting only a few top findings.

Figure 2A depicts the distribution of AUC scores computed for the individual
establishments using DSNL and the baseline model. The DSNL distribution is
more skewed to the right: it leads to a better overall predictive performance with
respect to numerous establishments when compared to the baseline.

Figure 2B shows the recall scores computed for k = 2.5%, 5%, 10%, 15% and
20%, respectively for the DSNL model, the baseline and the random predictor
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(note that the random predictor’s expected AUC score equals 0.5 and therefore
it was omitted from the graph in Figure 2A). It is clear that for values of k
greater than 5% the proposed algorithm outperforms the plausible baseline.

Executing a pairwise t-test for comparing the scores of DSNL and the baseline
at individual establishments leads to significant p-values. For the AUC results,
the p-value equals 6.6 · 10−16. The p-values obtained for recall scores were 0.4,
2.1 ·10−05, 2.1 ·10−14, and 9.6 ·10−21, respectively for k set to 5%, 10%, 15% and
20%. Note that as suggested in the graph, only the differences in performance
between DSNL and the baseline model for k ≤ 5% is insignificant.

We have performed a similar analysis for the other scenario (predicting rank-
ings of establishments most likely to record a specific isolate of Salmonella).
Figure 3A and 3B demonstrate the distributions of AUC scores and the recall
results for this task. The plots indicate that neither the baseline nor DSNL have
performed very well. The p-values for pairwise t-test also indicate that the differ-
ence between the performances of the model and the baseline is not statistically
significant. Apparently, from the perspective of a serotype, the basic hypothesis
of network-based similarity models does not hold as strongly as for the process-
ing establishments. Two establishments may appear similar in their performance
if they operate in similar food-processing environments, and intuitively that may
to lead to similar patterns of results of microbial testing. However, a similar claim
cannot be made as strongly for a pair of serotypes. This is probably why the
model and the baseline outperform the random process by a large margin in the
first task (serotype prediction), but not in the second (establishment prediction).

4 Conclusion and Future Work

We prsented an application of a Dynamic Social Network in Latent space model
(DSNL) to prediction tasks in the food safety surveillance domain. The pro-
posed approach exploits similarities in the historical records of positive isolates
of Salmonella serotypes at different food production facilities. In that, it expands
on the previous work which typically assumes independence of the processes gov-
erning microbiological performance of the individual facilities. Conducted exper-
iments indicate predictive utility of modeling the system as a network of food
establishments interconnected via specific Salmonella serotypes. We compared
the network model with a simple, but usually hard-to-beat baseline algorithm
which does assume independence. We examined two link prediction tasks using
real data. In one of these tasks, the proposed network model significantly out-
performs the baseline. In the other task, however, neither of them performed
well.

In this paper, we focused on evaluating predictive performance of the DSNL
model. Howver, it can also be used as a powerful visualization tool to help
understanding of the evolution of the underlying network over time. In addi-
tion, we have limited our attention to a fenomenological concept of links in the
network. We have not considered perhaps more intuitive ways in which the fa-
cilities may be interrelated e.g. due to shared supply channels or due to common
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corporate memberships. The observed predictive utility of our network is con-
siderably interesting on its own, nonetheless we plan to expand the framework
by incorporating those more intuitive connectivity patterns in order to mea-
sure their effect on predictive power of the attainable models. On the algorithm
level, we plan to investigate how much improvement in prediction performance
can be achieved by weighting the links (i.e. by the frequncy of co-occurrences)
and we will verify the impact of varying temporal granularity of obsrvation and
prediction periods on the predictive performance of the model.
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Abstract. In this paper, we analyze Beijing SARS data using methods
developed from the complex network analysis literature. Three kinds of
SARS-related networks were constructed and analyzed, including the
patient contact network, the weighted location (district) network, and
the weighted occupation network. We demonstrate that a network-based
data analysis framework can help evaluate various control strategies.
For instance, in the case of SARS, a general randomized immunization
control strategy may not be effective. Instead, a strategy that focuses
on nodes (e.g., patients, locations, or occupations) with high degree and
strength may lead to more effective outbreak control and management.

Keywords: SARS, Complex network analysis, Weighted networks.

1 Introduction

Severe Acute Respiratory Syndrome (SARS) was first found in the Guangdong
Province of China in November, 2002. During its 2003 outbreak, 8,098 confirmed
cases were reported in more than 30 countries within a very short period of time
[1]. Among them, 2,521 cases were reported in Beijing, representing close to one
third of the entire world-wide infected population.

The SARS outbreak prompted a world-wide public health response and has
had a dramatic impact on the Chinese public health system as to infectious dis-
ease prevention, outbreak detection, and response. From a research perspective,
significant efforts from both public health and related fields including but not
limited to various subareas of informatics and computer-based modeling, have
been devoted to studying the evolution and transmission patterns of SARS for
future prevention and treatment purposes.

The SARS literature from the perspective of infectious disease informatics
has also been growing [1, 2, 3, 4, 5, 6]. For example, several control measures
have been proposed to control the outbreak of the SARS epidemic [3, 4]. Spatial
analysis of SARS cases has been explored recently to reveal the associations be-
tween various related epidemic determinants [1]. Some authors have developed
network-based mathematical models to analyze the transmission patterns of the
SARS outbreak and to predict the outbreak diversity [2, 6]. Despite the signif-
icance and importance of using real-world SARS data to validate and evaluate
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these modeling efforts, however, very limited work has been done from an em-
pirical analysis perspective, partially due to the difficulty in accessing pertinent
epidemiological data.

Our research aims to bridge some of the existing gaps in the empirical analysis
line of work and to better connect the complex network analysis literature with
infectious disease informatics practice. In this reported research, we used the
Beijing SARS data provided by the Beijing Center for Disease Control. By mod-
eling patients, locations (districts in Beijing), and patient occupations as nodes,
respectively, and treating contacts or infections as edges, we have constructed
and analyzed three kinds of SARS-related networks: the patient contact net-
work, the district network, and the occupation network. In Section 2, we provide
a brief introduction to the data and the network-based analysis methods used in
our research. Section 3 presents findings based on the patient contact network.
Sections 4 and 5 report findings based on the weighted district and occupation
networks, respectively. We conclude the paper in Section 6 by discussing ongoing
and future research.

2 Data and Analysis Methods

Our Beijing SARS data were collected from an extensive survey of 624 confirmed
SARS patients from 14 administrative districts in Beijing, covering the period
from March 10, 2003 to May 13, 2003. These patients worked in 21 categories
of occupations. We have followed previous studies (e.g., [2, 6]) to define an “in-
fectious link” pointing from patient A to patient B, if it is highly likely that
A transmitted the SARS virus to B. In total, 447 such infectious links were
identified.

In our analysis, we first constructed a patient contact network based on in-
fectious links as typical in existing epidemiological studies, and analyzed this
network. However, with SARS being a unique and highly contagious airborne
epidemic disease, personal contacts uncovered in the patient surveys or inter-
views alone may not provide sufficient information to fully explain the trans-
mission patterns. As such, in an exploratory attempt, we also constructed two
additional networks: a location/district network and an occupation network to
further illustrate the spreading of the SARS epidemic in various parts of Beijing
and among different occupational categories. We study these two networks as
“weighted networks,” with the weight wij defined over an directed edge from
node i to j given as the total number of the infectious links from i to j. Fur-
ther, we study node “strength” si defined as si =

∑N
j=1 wij for node i, where N

is the total number of nodes in the network [7]. This strength measure can be
indicative of the ability to spread the disease from a given node.

In the next section, we investigate the topological properties of the patient
contact network and its evolution pattern. We then discuss findings based on
the weighted district and occupation networks.
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3 Patient Contact Network

Patient contact networks can provide useful information concerning disease
transmission and have been studied in the existing literature in various sce-
narios [8, 9, 10]. Using the Beijing SARS data described in Section 2, we first
study the degree distribution of the SARS contact network and then investigate
its temporal evolution.

3.1 Degree Distribution

It is well-known in the complex network analysis literature that network rep-
resentations of a large number of real systems can be characterized by a node
degree distribution with a power-law tail [11]. This is of particular importance
in epidemiology since in this case the expected reproductive number may be un-
bounded [12]. In epidemiology, the reproductive number is defined as the number
of secondary infections generated by one patient. This concept plays a key role
in understanding the dynamic process of epidemics and in evaluating impact of
control measures on the spread of infection [13]. Fig. 1 shows that the SARS
contact network also follows a power-law distribution. The blue line corresponds
to a power-law tail P (k) ∼ k−γwith γ = 2.8076. Not surprisingly, this result
shows that the SARS infectious network is a scale-free network, with the im-
plication that the expected reproductive number can be unbounded. A public
health implication of this finding is that the traditional disease control approach
based on random immunization (which has been shown to be effective in many
epidemic outbreaks [8]) may not be effective (unless, of course, the entire popu-
lation can be treated), because untreated hubs, albeit small in number, can still
lead to rapid and large-scale infections [8]. Instead, an alternative control method
targeting at containing highly connected nodes can be much more effective.
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Fig. 1. Degree distribution of SARS patient contact network
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(a) (b)

(c)

Fig. 2. SARS patient contact network in (a)–Week 2, (b)–Week 5, and (c)–Week 8

3.2 Network Evolution

It has been pointed out that in different phases, the transmission of epidemics
may exhibit different patterns [2, 12]. Since the records in our nine-week SARS
dataset are timestamped, we are able to observe the evolution of the SARS
patient contact network over time. We plot three weekly “snapshots” of the
contact network in Fig. 2.

The node degree in the contact network can be used to measure the node’s
disease spreading ability [2]. Fig. 3 (a) and (b) plot the average and maximum
degrees for 9 consecutive weeks, respectively. We notice that in the first two
weeks, the contact network has a relatively high average and maximum degree.
These measures start to decrease with time after Week 5. This decrease can be
attributed (at least partially) to several strong control measures implemented
by the government after April 14, 2003 (which is in Week 5).

A connected component of the contact network is a set of nodes in which each
node is connected to at least one edge. Connected components can be used to
demonstrate the extent to which an epidemic can spread within a population
[14]. We define the component ratio as the number of connected components
divided by the total number of nodes in the network. From Fig. 4, we observe
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Fig. 3. Network evolution. (a)–average degree and (b)–maximum degree.

that in the first two weeks, the ratio is relatively small. After some fluctuations
in the next two weeks, it starts to increase gradually. Part of this observation
is due to the fact that, during the first few weeks, most SARS patients were
misdiagnosed as having tuberculosis [15]. The isolation and quarantine controls
were not enforced for these patients during this initial period of outbreak. After
April 14, 2008, as strong control measures were taken, the epidemic was brought
under control.

4 Weighted District Network

The patient contact network analyzed in the previous section can provide insights
as to SARS transmission patterns among patients. However, for SARS, personal
contact information available does not provide sufficient explanation for the un-
derlying transmission patterns of this epidemic (partially due to the incomplete
nature of contact information acquired through patient surveys or interviews).
Geographical information is also crucial to gain a better understanding of the
epidemic [16].

Fig. 5 plots the weighted district network (WDN). We analyzed the infection
transmission patterns through the WDN. The results on the cumulative weight
distribution are shown in Fig. 6 (a). As we can observe, the cumulative weight
distribution follows a strongly right-skewed distribution, indicating a high degree
of heterogeneity in the WDN.

To better understand the WDN, we define sd(kd) as the average strength
of nodes with degree kd. Theoretically, if sd(kd) and kd are uncorrelated, then
sd(kd) ∼ kα

d with α = 1. In this case, weights cannot provide any additional
information than degrees [17]. Our analysis shows that the observed sd(kd) in-
creases with kd as sd(kd) ∼ kα

d with the exponent α = 1.8775. The findings
are plotted in Fig. 6 (b). Table 1 displays the top five district strengths. These
results indicate that the strengths of nodes are strongly correlated to degrees in
the WDN.
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Table 1. Top five district (node) strengths

District Chaoyang Haidian Dongcheng Fengtai Changping
Strength 241 152 113 97 87
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Fig. 6. (a) WDN cumulative weight distribution. (b) Average node strength sd as a
function of node degree kd.

One possible explanation is that both Chaoyang and Haidian District are
major financial districts with (combined) more than 15 million permanent and
temporary residents. Individuals in such densely-populated areas are more likely
to be exposed to the epidemic and further spread the disease.

5 Weighted Occupation Network

Disease transmissions often happen in workplaces and in turn occupations can
have an impact on the spreading patterns of infectious diseases [18]. In this
section, we analyze the SARS transmission patterns based on the weighted oc-
cupation network (WON) as shown in Fig. 7. Our preliminary results show that
the WON can reveal some additional insights.

The cumulative weight distribution of the WON, shown in Fig. 8 (a), follows a
right-skewed distribution. Table 2 lists these five occupations with top strengths.
The retiree category has the maximum strength 153, while the strengths of
the other four occupations, military personnel, governmental employees, unem-
ployed, and industry workers have relatively smaller occupation strengths.

This analysis shows that not all the occupations have equal probabilities to be
infected with the SARS virus. For instance, the retiree population was more sus-
ceptible to be infected because of their lowered immune function. In the Chinese
society, the retirees play an active role in family functions and child care and their
working sons and daughters are in different occupations. Previous papers (e.g.,
[15]) have also reached similar conclusions. From a outbreak control perspective,
those occupations with strong strengths need to be closely monitored.

Following an analysis procedure similar to that used for the WDN, we conclude
that for the WON the average node strength sd increases with the degree kd

and that sd(kd) ∼ kβ
d , with the exponent β = 1.6142, which is larger than 1.

This result is shown in Fig. 8(b), indicating that node strength is also strongly
correlated to degree in the WON.



Network-Based Analysis of Beijing SARS Data 71

9  3 

7

 5 

3

 3 

6

 1 

4

 3 

15

 12 10

 3 

16

 8 

17

 5 

81

 2 

18

 8 

 10 

 3 

 10 

 10 

82

 10 

 6 

11

 3 

84

 1 

 4 

14

 6 

 2 

 2 

 1 

 1 

 1 

 4 

 3 

 2 

 1 

 3 

 1 

 1  1 

 2 

 2 

 3 

 5 

 2 

80

 1 

 1 
 7 

 13 

 3 
 4 

 9 
 17 

 4 

 6 

5

 2 
 5 

 1 

19

 1 

 10 

 15 
 2 

 15 

 5 

 2 

 17 

 7 

 4  1 

 1 

 1 

 6 

 8 86

 1 

 5 

 2 2
 1 

 10 

 6 
 3 

 1 

 7 

 2 

 7 

 4 

 3 

 1  1 

 1 

 2 

 9 

 3 

 2 

 5 

 1 

 9 

 4 

 4 

 8 

 4 

 4 

 9 

 4 

 4 

 4 

 2 

 2 

 3 

 1 
 2 

 5 

 2 

 1 

 2 

83

 1 

 1 

 1 

 2 

 1 

 1 

 2 

 1 

Fig. 7. Weighted occupation network

Table 2. Top five occupation (node) strengths

Occupation Retiree Military Government Employee Unemployed Industry
Strength 153 112 94 93 74
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Fig. 8. (a) WON cumulative weight distribution. (b) Average node strength sd as a
function of node degree kd.
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6 Concluding Remarks

In this paper, we analyze Beijing SARS data from a complex network analysis
perspective. To better understand the SARS epidemic transmission patterns and
evolution, we have studied three networks derived from the patient survey data,
including a patient contact network, a weighted district network, and a weighted
occupation network. The patient contact network possesses the scale-free degree
distribution and its temporal evolution (as measured by average degree, maxi-
mum degree, and component ratio) exhibits some interesting patterns that can
be explained by various control measures implemented during the SARS out-
break in Beijing. In both weighted district and occupation networks, the weights
follow right-skewed distributions and the strengths of nodes are strongly cor-
related to their degrees. These observations and analysis results indicate that
the traditional random isolation control method may not be effective. Instead,
a more effective control program should target at nodes with high degree and
strength.

Due to various difficulties in data collection, the Beijing SARS dataset used in
our study may not be complete in that some infectious links may be missing. Our
current work focuses on inferring some of these missing links for analysis purposes
using methods similar to those reported in [19, 20, 21]. We are also working on
analyzing various topological and distributional properties of weighted networks.
The results are expected to benefit epidemiological data analysis in general.
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Abstract. The Tutte polynomial and the Aharonov-Arab-Ebal-Landau algo-
rithm are applied to Social Network Analysis (SNA) for Epidemiology, Biosur-
veillance and Biosecurity. We use the methods of Algebraic Computational 
SNA and of Topological Quantum Computation. The Tutte polynomial is used 
to describe both the evolution of a social network as the reduced network when 
some nodes are deleted in an original network and the basic reproductive num-
ber for a spatial model with bi-networks, borders and memories. We obtain  
explicit equations that relate evaluations of the Tutte polynomial with epidemi-
ological parameters such as infectiousness, diffusivity and percolation. We 
claim, finally, that future topological quantum computers will be very important 
tools in Epidemiology and that the representation of social networks as ribbon 
graphs will permit the full application of the Bollobás-Riordan-Tutte polyno-
mial with all its combinatorial universality to be epidemiologically relevant. 

Keywords: Social Network Analysis, Tutte Polynomial, Aharonov-Arab-E bal-
Landau algorithm, Topological Quantum Computation, Basic Reproductive 
Number, Borders. 

1   Introduction 

Human factors behind public health security for handling emerging diseases (SARS, 
Ebola, etc.) and re-emerging diseases (cholera, tuberculosis, influenza), and for avoid-
ing threats of bioterrorist attacks, the geo-ecologic global crisis and the global  
shortage of food and fuel among others, were analyzed by The World Health Organi-
zation in the report entitled, “A safer future: global public health security in the 21st  
century” [1]. 
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Close and continuous networking groups at local and global levels have been  
observed in recent decades, with serious implications for the spread of infectious  
diseases [2]. 

In epidemiology in general and in biosurveillance and biosecurity in particular, the 
social network analysis (SNA) have been relevant in understanding these complex 
social phenomena [3]. 

In SNA, the mathematical theory of graphs and networks has a prominent role, 
since the social networks are represented by graphs. In algebraic graph theory, graphs 
and networks are characterized using graph polynomials such as the chromatic poly-
nomial, the Tutte polynomial and the Bollobás-Riordan-Tutte polynomial [4]. 

Graph polynomials encode information about a graph and useful information about 
topological and geometrical properties of a graph may be extracted combinatorially 
from the algebraic structure of the graph polynomial. For example, the Tutte polyno-
mial is able to encode a huge amount of information about the topological properties 
of a graph and hence the Tutte polynomial is relevant for epidemiology.  

In Computational  SNA applied to epidemiology, two lines of development have 
been recently explored: the Numerical Computational SNA (NCSNA) and the Alge-
braic Computational SNA (ACSNA). In NCSNA, numerical measurements for com-
plex social networks are computed [3]. In ACSNA, algebraic objects like polynomials 
are computed  for complex social networks. Another field is the application of topo-
logical Quantum Computation (TQC) in epidemiology, and specifically the possible 
application of the topological quantum algorithms for  the Tutte polynomial [5]. 

This paper explores potential applications of the ACSNA and the TQC in epidemi-
ology. Applications of Tutte polynomial and Topological Quantum Computers in 
Epidemiology, Bio-Surveillance and Bio-Security are described. 

2   Tutte Polynomial in Epidemiology  

In the Numerical Computational Social Network Analysis many packages are used to 
extract numerical and graphical information from a given social network. An example 
is illustrated in Figure 1. This figure shows a maplet which is able to obtain two nu-
merical measurements named “stratum” and “compactness” from the displayed net-
work [6]. The maplet is also able to obtain the adjacency matrix of the given network. 

On the other side, in the Algebraic Computational Social Network Analysis, every 
network is characterized, not directly by a numerical measurement, but by an alge-
braic object such as a polynomial that codifies the combinatorial properties of such a 
social network. An example is the Tutte polynomial, which is the standard universal 
invariant topological polynomial for planar graphs. 

Social networks are usually represented by standard planar graphs for which it is 
possible to define the Tutte Polynomial. For example, for the graph on the right hand 
side of Figure 1 the corresponding Tutte polynomial is given by 

( )T ,x y x2 ( )+  + y x x2 x5 4 x4 6 x3 4 x3 y 4 x2 9 x2 y 3 x2 y2 x 7 x y2 + + + + + + + + ( = 
2 x y3 6 x y y 3 y3 y4 3 y2 +  +  +  +  +  + ) .  
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Fig. 1. A Maplet in Numerical Computacional Social Network Analysis  

 

Fig. 2. A ribbon graph and its embedding in a bi-torus  

In biosurveillance and bio security, social networks are more adequately repre-
sented using the so-called oriented ribbon graphs, which are graphs embedded in 
oriented surfaces. For the ribbon graphs, the Bollobás-Riordan-Tutte polynomial is 
defined and such a polynomial is a three-variable polynomial that generalizes the 
Tutte polynomial. An example of a ribbon graph is given below in the Figure 2 [7]. 

The ribbon graph in Figure 2  has only three vertices and six edges. In Figure 2 
such a ribbon graph is depicted as embedded in a Riemann surface with genus two 
and is bi-torus. For this ribbon graph, the corresponding  Bollobás-Riordan-Tutte 
polynomial is given by [7] 

.  

2.1   Network Evolution Described Via Tutte Polynomials 

The social networks relevant in Epidemiology, Bio-Surveillance and Bio-Security are 
dynamic networks with a topological structure which is changing through time. An 
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Fig. 3. Example of Random Network Evolution 

example is depicted in the Figure 3. This figure shows the evolution of a network 
from an initial configuration denoted G1 to a final configuration G12. The sequence of 
graphs G1, G2, …,G12 can be represented as a sequence of the corresponding Tutte 
polynomials for the graphs G1, G2, …,G12.   

The evolution of the network is now viewed as a transition from the Tutte Polyno-
mial T(G1,x,y) to the Tutte Polynomial T(G12,x,y). Explicitly, the Tutte Polynomials 
for the graphs G1, G2,…, G5 are given by  

= ( )T , ,G
1

x y x10

 

= ( )T , ,G
2

x y x8 ( )+ + y x x2

 

 = ( )T , ,G
3

x y x7 ( )+ + + + + y2 y x 2 x y 2 x2 x3
 

= ( )T , ,G
4

x y x6 ( ) +  + + + + + + +  + y3 2 y2 4 x y 2 x y2 3 x2 y x 3 x2 y 3 x3 x4
 

( )T , ,G
5

x y x5 y4 3 y3 7 x y2 2 x y3 9 x2 y 3 y2 6 x y 4 x2 3 x2 y2 6 x3 +  + + + + + + +  + ( = 

y x 4 x3 y 4 x4 x5 +  +  +  +  + )
 

From the Tutte polynomials corresponding to the social networks depicted in  
Figure 3, we may obtain numerical measurements about the connectivity of the con-
tact networks. An example is shown in Table 1. 

Every column in Table 1 is an increasing index of the complexity of the network. 
For example, epidemiologically, T(G,1,1) may be interpreted as the probability of 
infection for members of the social network G. This table shows that the probability 
of infection in the social network G3 is eight times greater than the probability of 
infection in the social network G1.  
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Table 1. Numerical Evaluations of the Tutte polynomial for networks in Figure3 

Graph T(G, 1,1) T(G, 2, 1) T(G, 1,2) T(G, 2,0) T(G,3,3)
G1 1 1024 1 1024 59049
G2 3 1792 4 1536 98415
G3 8 3072 14 2304 170586
G4 21 5248 48 3456 299619
G5 55 8960 164 5184 528525
G6 144 15296 560 7776 933606
G7 377 26112 1912 11664 1649889
G8 987 44576 6528 17496 2916135
G9 2584 76096 22288 26244 5154426
G10 6765 129904 76096 39366 9110859
G11 15125 215230 215230 59046 17580753
G12 2357947691 4767440679 35641657548953344 39916800 17 * 1022  

2.2   Analysis of Reduced Networks Using Tutte Polynomials 

Figure 4a shows a social network with personal and geographical contacts for which 
some nodes represent patients, other nodes represent hospitals and other different 
nodes represent geographical areas. These networks with geographical contacts are 
relevant in the analysis of pandemics such as SARS [3], avian flu, etc. 

                      

Fig. 4. A Network and its Reduced Network where some nodes are deleted  

For the Network in Figure 4a, the corresponding Tutte polynomial is given by 

( )T , ,G x y x ( ) +  +  +  + + y2 y 2 x y x 2 x2 x3 y4 4 y3 6 y2 3 y 10 x y x y3+ + + +  + ( = 
6 x y2 3 x 8 x2 y 2 x2 y2 7 x2 3 x3 y 7 x3 4 x4 x5 +  +  +  +  +  +  +  +  + ) x6 5 x5 5 x4 y +  + (

10 x4 16 x3 y 10 x3 4 x3 y2 14 x2 y2 18 x2 y 5 x2 4 x2 y3 14 x y2 +  +  +  +  +  +  +  +  + 

8 x y x 9 x y3 3 y4 x 5 y3 4 y2 y 3 y4 y5 +  +  +  +  +  +  +  +  + ) ( ) +  + y x x2
2

 

Figure 4b shows a reduced social network resulting from the social network de-
picted in Figure 4a, when three nodes are removed. The corresponding Tutte polyno-
mial for this  reduced social network takes the form  

( )T , ,G
r

x y ( )+  + y x x2 ( ) + + + + + + + +  + y3 2 y2 y 2 x y2 4 x y x 3 x2 y 3 x2 3 x3 x4 ( = 

x5 4 x4 6 x3 4 x3 y 9 x2 y 3 x2 y2 4 x2 6 x y2 6 x y x 3 x y3 y +  +  +  +  +  +  +  +  +  +  + 
2 y3 y4 3 y2 +  +  + ) ( ) +  +  +  +  + y2 y 2 x y x 2 x2 x3
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An algebraic measurement of the difference between the original network and its 
reduced network can be obtained as a relative difference between the Tutte polynomi-
als for both networks 

 − ( )T , ,G x y ( )T , ,G
r

x y

( )T , ,G x y
129 x11 4 y6 18 x6 y6 9 x2 y3 704 y4 x3 32 x y3 x14 −  +  −  +  −  + ( = 

1039 x8 y 45 x y7 67 x9 y3 10 x13 4 x9 y4 5 x10 y3 18 y4 x 46 y x3 +  +  +  +  +  +  −  − 
56 x4 y7 15 x y2 9 x5 y7 6 x11 y2 y10 x 190 x7 4 x4 y8 52 x2 y2 46 x12 +  −  +  +  +  +  +  −  + 

714 x6 y 352 x8 y3 967 x8 y2 245 x10 17 y x2 10 x5 308 x8 7 x3 + +  + + − − +  − 
76 x11 y 1743 x6 y2 1696 x6 y3 555 x5 y5 1347 x5 y4 y7 8 y5 6 y x4 +  +  +  +  +  −  −  − 
9 x12 y 9 y4 5 y3 y2 23 y8 x 291 x7 y4 35 x7 y5 328 x9 3 x3 y2 +  −  −  −  +  +  +  +  + 
412 x4 y2 344 x3 y3 23 x y5 51 y6 x 679 x9 y 272 x2 y5 2 y x x2 +  +  +  +  +  +  −  − 

383 y6 x3 1133 x4 y3 150 x2 y4 7 y9 x 239 y6 x2 37 x2 y8 124 x2 y7 + +  + + + + + 
683 x3 y5 54 x8 y4 18 x4 75 x10 y2 293 x10 y 59 x6 362 x9 y2 x8 y5 +  +  −  +  +  +  +  + 
124 x3 y7 253 x5 y 5 x2 y9 20 x3 y8 1173 x5 y2 1799 x5 y3 828 x4 y5 +  +  +  +  +  +  + 
1311 x4 y4 300 x4 y6 118 x5 y6 1072 x7 y 1615 x7 y2 994 x7 y3 203 x6 y5 +  +  +  +  +  +  + 

822 x6 y4 y9 x3 + + ( ) + + y x x2 x y4 4 y3 6 y2 3 y 10 y x x y3 6 x y2+ + + + +  + () (

3 x 8 y x2 2 x2 y2 7 x2 3 y x3 7 x3 4 x4 x5 +  +  +  +  +  +  +  + ) x6 5 x5 5 y x4 10 x4 +  +  + (

16 y x3 10 x3 4 x3 y2 14 x2 y2 18 y x2 5 x2 4 x2 y3 14 x y2 8 y x x +  +  +  +  +  +  +  +  +  + 
9 x y3 3 y4 x 5 y3 4 y2 y 3 y4 y5 +  +  +  +  +  +  + ) )  

Numerical evaluations of the algebraic index of lost connectivity are: 

 = 
− ( )T , ,G 1 1 ( )T , ,G

r
1 1

( )T , ,G 1 1
0.9593810445

, 
 = 

− ( )T , ,G 2 1 ( )T , ,G
r

2 1

( )T , ,G 2 1
0.9942398100

, 

 = 
− ( )T , ,G 1 2 ( )T , ,G

r
1 2

( )T , ,G 1 2
0.9806076277

,
 = 

− ( )T , ,G 2 0 ( )T , ,G
r

2 0

( )T , ,G 2 0
0.9919354839

 

The numerical evaluations show that the reduced network in Figure 4b only keeps 
5% of the original connectivity in the network of the Figure 4a.  

2.3   Spatial Models with Bi-networks, Memories and Borders 

Figure 5 shows a case where a country is considered as a circle with open boundaries, 
every sub-region is viewed as a complex network of localities and each locality is repre-
sented by a social network. Both the considered Bi-Networks and the open borders are 
spatial effects which are complemented by a temporal effect such as memory. The spa-
tial propagation of a disease from the borders to the interior of the country, incorporat-
ing the effects of Bi-Networks and Memories, is examined here. Specifically, we will 
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present the explicit form of the basic reproductive number for our spatial model. We 
assume that human diffusion is spatially inhomogeneous and the corresponding diffu-
sivity is a function of the spatial coordinates.  

The SIR model spatially extended with a specified network of geographical  locali-
ties and with a given contact network for every locality was assumed. The forces of 
infection and removal are affected by random noise which is described using expo-
nentially decaying memory functions. As will be seen, the basic reproductive number 
is determined by the combinatorial properties of the networks, such as the degree 
distribution and the Tutte polynomial and its generalizations. 

 

Fig. 5. Spatial Epidemic Model with Bi-Networks, Memories and Borders 

The equations of the model are: 
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where Yi( r,t) is the density of infected individuals in the locality i at time t and coor-
dinate r. The infectiousness parameters are denotedβ, the removal forces are de-
notedγ, and the parameters of memory are denoted. The human mobility between 
localities is measured by vi,j, the human diffusivity is denoted with a parameter of 
spatial heterogeneity denoted. Ni is the total number of individuals in the locality i. 

Using a standard method [8], the following form for the basic reproductive number 
is derived 
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where EG(d) is the mean degree for the contact network G and EG(d2) is the second 
moment for the degree of the contact network.   

3   Topological Quantum Computers in Epidemiology 

Computation of Tutte polynomials is a #P-hard problem [9]. This problem cannot be 
confronted using standard Turing machines and the corresponding classical computers. 
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Fig. 6. Possible future application of Topological Quantum Computer in Epidemiology 

 

Fig. 7. Simulation of a Topological Quantum Computer using Computer Algebra 

Actually, it is believed that quantum computers and specifically topological quan-
tum computers are more efficient than classical computers when Tutte computations 
are involved. Recently, a topological quantum algorithm, named the Aharonov-Arab-
Ebal-:Landau (AAEL algorithm) was proposed for the approximated computation of 
numerical evaluations of the Tutte polynomial for any given network [5,10]. As is 
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well known, the Tutte polynomial has an intrinsic relation to the Potts partition func-
tion and the AAEL algorithm is a step forward to the solution of the Potts problem, 
relevant in  mathematical epidemiology and sociology.   

A very rudimentary illustration of possible future applications of Topological 
Quantum Computers in Epidemiology, Bio-Surveillance and Bio-Security is depicted 
in Figure 6. This figure shows that a complex social network is considered as the 
input for a topological quantum computer that is able to compute the Tutte polyno-
mial for the given network. Then the obtained Tutte polynomial is entered as the input 
for an intelligent standard quantum computer [11] that is able to make decisions in 
real time. 

With the aim to have an idea of the possible future interface between epidemiolo-
gists and topological quantum computers, it is possible to build certain java applets 
that are designed using computer algebra, specifically maplets. Figure 7 shows a 
maplet which is able to compute the Tutte polynomial of a given social network with 
some complexity [12]. It is clear that the computer algebra is not able to replace 
Topological quantum computers, but the computer algebra is able to give some in-
sight into the behavior of topological quantum computers. 

4   Conclusions 

In this work we have demonstrated that the Tutte polynomial codifies important com-
binatorial information of a given social network and that this combinatorial informa-
tion is relevant in epidemiology. This information may indicate the way in which a 
social network is changing through time or give a characterization of the reduced 
networks resulting from other networks when some nodes are removed or show the 
effects on the basic reproductive number corresponding to spatial models with bi-
networks, borders and memories. In this last case it is concluded that for the basic 
reproductive number, that incorporates the effects of borders, memories and bi-
networks, the infectiousness is directly proportional to the Tutte polynomial of the 
contact network and it is possible to derive control measures to disrupt disease propa-
gation from the borders to the interior of the country. 

Consistent with this and according to the AAEL algorithm, topological quantum 
computers and algorithms  may be a powerful tool for social network analysis applied 
in Epidemiology, Bio-Surveillance and Bio-Security. 

A very interesting line for future research corresponds to the representation of the 
social networks as ribbon graphs and the subsequent application of the Bollobás-
Riordan-Tutte polynomial for the epidemiological characterization of contact net-
works. 
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Abstract. The Bayesian Aerosol Release Detector (BARD) is a biosurveillance 
system for detecting and characterizing disease outbreaks caused by aerosol re-
leases of anthrax. A major challenge in modeling a population’s exposure to 
aerosol anthrax is to accurately estimate the exposure level of each individual. 
In part, this challenge stems from the fact that the only spatial information rou-
tinely contained in the biosurveillance databases is the residential administrative 
unit (e.g., the home zip code of each case). To deal with this problem, nearly all 
anthrax biosurveillance systems, including BARD, assume that exposure to an-
thrax would occur at one’s residential unit—a limiting assumption. We propose 
a refined version of BARD, called BARD-C, which incorporates the effect of 
commuting on a worker’s exposure. We also present an experimental study to 
compare the performances of BARD and BARD-C on semi-synthetic outbreaks 
generated with an algorithm that also accounts for commuting. 

Keywords: BARD, biosurveillance, anthrax, commuting. 

1   Introduction 

An outdoor aerosol release of B. anthracis could infect hundreds of thousands of 
individuals and without early detection mortality could be as high as 30,000 to 3 mil-
lion [1, 2]. Therefore, the early detection of outbreaks caused by aerosol anthrax is an 
important problem in biosurveillance. The Bayesian Aerosol Release Detector 
(BARD) [3] is a system for detecting and characterizing such releases. BARD inte-
grates the analysis of biosurveillance data—in the form of counts of Emergency De-
partment (ED) visits with respiratory chief complaints (RCC)—with the analysis of 
meteorological and geographical data. Through this analysis BARD determines 
whether the current spatio-temporal pattern of respiratory disease incidence in the 
surveillance region is more consistent with the historical patterns or with the pattern 
that it would expect with an aerosol anthrax release.    

Modeling a population’s exposure to aerosol anthrax is a difficult problem. One 
major challenge is to estimate the exposure level (i.e., the number of inhaled anthrax 
spores) of each individual in the exposed region. The exposure level of an individual 
is largely determined by his location at the time of exposure. Hence, detailed spatial 
modeling at the person-level is required for accurate estimation of the exposure level. 
However, the data needed to parameterize such models are very difficult to obtain. In 
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fact, the only type of spatial information that is routinely contained in biosurveillance 
databases is the residential administrative unit (e.g., the home zip code of each case). 
Faced with this lack of detailed spatial information, nearly all anthrax biosurveillance 
systems (including the existing version of BARD) make two common simplifying 
assumptions. First, they assume that all individuals that live in the same administra-
tive unit would have the same exposure level—usually taken to be the level at the 
unit’s centroid. Second, they assume that exposure to anthrax would occur at one’s 
residential unit. While relaxing the first assumption remains currently an open chal-
lenge, in the last few years there has been some progress toward relaxing the second 
assumption. The key to this progress has been the integration of biosurveillance sys-
tems with mobility models that are parameterized through datasets that describe the 
travel patterns of the population. For one type of travel, namely the work-related 
commuting, such datasets are publicly available from the U.S. Census Bureau. For 
other types of travel, data are more difficult to obtain.  

The first study that incorporated a mobility model in the simulation of anthrax out-
breaks was conducted by Buckeridge [4]. He developed methods for integrating mo-
bility in outbreak simulation and employed commuting data provided by the U.S. 
Census Bureau as well as survey-based non-commuting travel data. Then, he investi-
gated the impact that incorporation of mobility in outbreak simulation had on two 
outbreak detection algorithms: a cumulative-sum temporal algorithm and the SMART 
spatial algorithm [5]. In a similar study, Cami et al. [6] investigated the impact that 
inclusion of commuting in outbreak simulation had on the detection and characteriza-
tion performance of BARD. A few papers have investigated the integration of mobil-
ity models with outbreak detection algorithms. Duczmal and Buckeridge [7] proposed 
a method for integrating a commuting model with the spatial scan algorithm [8]. 
Garman et al. [9] developed a method for probabilistically inferring the work zip code 
from the home zip code and then integrated this method with the PANDA detection 
algorithm [10].  

Here, we propose a simple and practical method for integrating a commuting 
model with BARD. We refer to the refined version of BARD that takes commuting 
into account as BARD-C. We present an experimental study that compares the per-
formances of BARD and BARD-C on semi-synthetic outbreaks that were generated 
by a simulation algorithm that also employed a commuting model. We expected that 
BARD-C would perform better than BARD on these outbreaks. Our main research 
question was whether the improvement in performance would be large enough to 
warrant the additional computational cost. 

2   An Overview of BARD 

Next, we provide a brief description of BARD; an elaborate description of this system 
is given by Hogan et al. [3]. We focus on a region surrounding the city of Pittsburgh. 
This region consists of seven counties: Allegheny, Armstrong, Beaver, Butler, Law-
rence, Washington, and Westmoreland. The ED-visit counts for the surveillance re-
gion are available at the granularity level of various administrative units, such as U.S. 
Census block groups and zip codes. Following the terminology in Lawson and 
Kleinman [11] we generically refer to these units as tracts. 
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2.1   Outbreak Detection with BARD 

BARD attempts to discriminate between two hypotheses. The null hypothesis states 
that only “background” respiratory disease is present in the surveillance region. The 
alternative hypothesis states that both background respiratory disease and respiratory 
disease caused by an aerosol release of anthrax are present. Using Bayes’ theorem, 
BARD computes the posterior probability of the attack hypothesis 1H  given data, as 

follows: 
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In addition, BARD computes the likelihood ratio, or the Bayes factor 
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In equations (1)-(2), b  is the biosurveillance vector consisting of the tract-level 
counts of ED visits with RCC during the last 24 hours; G  is the geographical matrix 
containing the tract populations and the x, y coordinates of the tract centroids; M  is 
the meteorological matrix containing the wind speed, the wind direction and the at-
mospheric class—a measure of atmospheric turbulence—for various observation 
times during the most recent week. The posterior probability of 1H  and the Bayes 
factor are both measures of the evidence provided by the data in favor of the alterna-
tive hypothesis.  
 The two key quantities in equations (1)-(2) are ( )0|P Hb ,G,M , the likelihood of 

biosurveillance data under 0H , and ( )1|P Hb ,G,M , the likelihood of biosurveil-

lance data under 1H . Assuming conditional independence among the counts of differ-

ent tracts, given a hypothesis and the meteorological conditions, BARD computes the 
two region-wide likelihoods ( )0|P Hb ,G,M  and ( )1|P Hb ,G,M  by first comput-

ing the corresponding tract-level likelihoods and then using equations: 
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(3) 

In eq. (3), ic  denotes the 24-hr count of tract i  and ( , , , , )x y h q t=r  denotes the 

release parameter vector, consisting of the release location , ,x y h , the release quantity 

q , and the release time t . To compute the tract-level likelihoods 0( | , )iP c H G,M  

and 1( | , , )iP c H G,M r , BARD employs the binomial probability model.  

The null model of each tract i  is specified as follows: 

0, 0,| Bin( , )i i i ic nθ θ∼ , 

0, Beta( , )i i iθ α β∼ . 
(4) 
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In eq. (4), 0,iθ  denotes the probability that a person who lives in tract i  has visited an 

ED with RCC in the last 24 hours due to background disease; in  denotes the popula-

tion of tract i . By using the model specified by eq. (4) and integrating over the pa-
rameter 0,iθ  it can be shown that the likelihood ( )0|iP c H ,G,M  is a beta-binomial 

probability. BARD computes the estimates ˆˆ ,i iα β  of the beta distribution parameters 

from historical data for tract i through a moment-matching approach that takes into 
account the day-of-week and month-of-year variation of the baseline ED data. 

The alternative model of each tract  i  is specified as follows: 

1, 1,| Bin( , )i i i ic nθ θ∼ , 

0, Beta( , )i i iθ α β∼ , 

1, 0, 1,1 (1 )(1 )i i iθ θ θ+= − − − . 

(5) 

In eq. (5), 1,iθ  denotes the probability that a person who lives in tract i  has visited 

an ED with RCC in the last 24 hours either due to the background disease or due to 
exposure to anthrax; 1,iθ+  denotes the probability that a person who lives in tract i  has 

visited an ED with RCC in the last 24 hours due to exposure to anthrax. The last iden-
tity in eq. (5) is derived by assuming causal independence between ED visits due to 
the background disease and ED visits due to exposure to anthrax.  

BARD computes the quantity 1( | , , )iP c H G,M r  by first deriving an estimate for 

the probability 1,iθ+  and then integrating over the parameter 0,iθ . The estimate for 1,iθ+  

is computed by taking into account (i) the dose of anthrax spores that would be ob-
served in the centroid of tract i given the release scenario specified by r , and (ii) a set 
of parameters for a model of the respiratory disease caused by inhalational anthrax. 
The dose of anthrax spores is computed through the Gaussian plume model of atmos-
pheric dispersion (see [3]). The key disease-specific parameters that are taken into 
account in the estimation of 1,iθ+  are: (i) minute ventilation, the volume of air breathed 

per unit of time, (ii) the ID50, the dose of spores infectious for 50% of the population, 
(iii) the probit slope, or the slope of the line that specifies the relationship between a 
probit—defined as 1−Φ (fraction of exposed who die), where Φ  denotes the CDF of the 
standard normal distribution—and the logarithm of the dose of inhaled spores, and (iv) 
the parameters of a log-normal distribution that is employed to model the interval from 
exposure to the ED visit. Hogan et al. [3] give a detailed account of these parameters. 

After computing 1,iθ+ , BARD integrates with respect to 0,iθ  to compute the quantity 

1( | , , )iP c H G,M r . Finally, BARD integrates over the release scenarios r  through a 

Monte Carlo integration technique called likelihood weighting [3]. 

2.2   Outbreak Characterization with BARD 

In addition to computing the posterior probability of 1H  and the Bayes factor, which 

can be used as alarm statistics for detecting outbreaks, BARD computes an estimate 



 Integrating a Commuting Model with the Bayesian Aerosol Release Detector 89 

for each element of the release vector r . Accurate characterization of a release might 
assist responders in mitigating the impact of an outbreak. The estimation of r  is car-
ried out in Bayesian fashion. BARD assumes that the release parameters are condi-
tionally independent given 1H , i.e.,  

1 1 1 1 1( | , ) ( , | ) ( | ) ( | ) ( | )P H P x y H P h H P q H P t H=r G,M . (6) 

BARD employs a uniform prior for each element of r , except h , for which a prior 
that favors smaller release heights relative to the higher ones is employed (see [3],  
p. 5248). Finally, BARD computes the posterior expectation of each element of r  
inside the likelihood-weighting integration procedure, mentioned in Section 2.2. The 
posterior expectation of r  constitutes the release characterization produced by 
BARD. 

As a final remark, BARD can also be used to simulate anthrax outbreaks. The 
BARD simulator [3] produces semi-synthetic outbreaks, created by first simulating 
cases due to an aerosol release of anthrax and then injecting the simulated cases  
into real ED-visit data. Cami et al. [6] developed a refined version of BARD simula-
tor, called BARD-C simulator, which incorporates a commuting model in outbreak  
simulation. 

3   Integration of a Commuting Model with BARD 

The dataset that describes the commuting patterns is provided by the U.S. Census 
Bureau. This dataset was collected during the 2000 Census, has national coverage and 
is provided at the census tract level: each commuting flow represents the individuals 
who commute daily between a residence census tract and a work census tract. The 
commuting flows can be naturally modeled by a weighted, directed graph G  in which 
nodes denote tracts, arcs represent commuting flows, and the weight of an arc denotes 
the number of commuters in the corresponding flow. We extracted from the nation-
wide commuting dataset the flows for which both the residence tract and the work 
tract belong to our surveillance region. The total number of commuters in this intra-
region subset of flows was 1,005,566. Note that the flows for which only one of the 
two end-tracts belonged to the region accounted for only 3% of the intra-region flow 
and hence we ignored them for modeling convenience. In a pre-processing step we 
transformed the commuting flows from the census tract level provided by the Census 
Bureau to one of the two levels supported in BARD, namely the block group level. 
This pre-processing was carried out by splitting each commuting flow between a pair 
of census tracts 1 2,T T  into several smaller-sized flows, each joining a constituent 

block group of 1T  with a constituent block group of 2T , as discussed in [6]. The final 

commuting graph for our region consisted of 1991 nodes (block groups) and 324,402 
arcs (commuting flows). 

3.1   Development of BARD-C Detector 

BARD-C detector takes as input a representation of the commuting graph G , in addi-
tion to the biosurveillance, meteorological, and geographical data. BARD-C computes 
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the likelihood ( )0|P Hb ,G,M  of biosurveillance data under the null hypothesis in 

exactly the same way as BARD. It could be argued that BARD’s null model implic-
itly takes the commuting effect into account by parameterizing the beta distributions 
using historical data. 

The refinement comes in the computation of the likelihood of biosurveillance data 
under the alternative hypothesis, i.e., 1( | )P Hb ,G,M . In developing the refinement 

needed to account for commuting, we were guided by two main objectives. The first 
objective was to adjust the computation of 1( | )P Hb ,G,M  so as to account for the 

commuting-induced non-uniformity in the exposure level of individuals living in the 
same tract. The second objective was to retain the practical value of BARD by ensur-
ing that the running time of BARD-C on a commodity computer was shorter than  
a few hours (which is the typical frequency for running a detection algorithm in 
 production).  

BARD-C employs the same alternative model as BARD, but a refined method for 
computing the parameters of that model. In eq. (7), we have re-written the alternative 
model of a tract i , using the superscript * to highlight the difference in the computa-
tion of the model parameters between BARD and BARD-C.  

* *
1, 1,| Bin( , )i i i ic nθ θ∼ , 

0, Beta( , )i i iθ α β∼ , 

* *
1, 0, 1,1 (1 )(1 )i i iθ θ θ+= − − − . 

(7) 

The parameter *
1,iθ  still denotes the probability that a person who lives in tract i  

has visited an ED with RCC in the last 24 hours either due to the background disease 
or due to exposure to anthrax; the parameter *

1,iθ+  still denotes the probability that a 

person who lives in tract i  has visited an ED with RCC in the last 24 hours due to 
exposure to anthrax. Because the commuting is now taken into account, the exposure 
tract of an individual could be different from the residence tract. Let us denote by 1,iθ  

the probability that a person who is exposed in tract i  has visited an ED with RCC in 
the last 24 hours either due to the background disease or due to exposure to anthrax. 
Likewise, let us denote by 1,iθ+  the probability that a person who is exposed in tract i  

has visited an ED with RCC in the last 24 hours due to exposure to anthrax. Of 
course, if commuting is not taken into account, as in the existing version of BARD, 
we would have *

1, 1,i iθ θ=  and *
1, 1,i iθ θ+ += , for all tracts i . Note that the four parame-

ters * *
1, 1, 1, 1,, , ,i i i iθ θ θ θ+ +  are temporal in the sense that each of them denotes the probabil-

ity that an event has occurred in the last 24 hours. Our problem now has reduced to 
finding a method for computing the probabilities *

1,iθ+ . Using a four-step approach 

discussed in the Appendix, we derived the following expression 

*
1, 1,

( )

ij
i j

j Out i i

n

n
θ θ+ +

∈

= ∑ . (8) 
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In eq. (8), ( )Out i  denotes the union of  the set { }i  with the set of out-neighbors of 

tract i  (i.e.,  the tracts where people who live in tract i  work). Eq. (8) serves as the 
basis of the refinement performed in BARD-C. First, BARD-C computes the parame-
ters 1,iθ+  for all tracts i  using the Gaussian plume model and the disease-specific pa-

rameters (as explained earlier) and then computes the parameters *
1,iθ+  using eq. (8). 

BARD-C then uses the adjusted parameter *
1,iθ+  instead of the parameter 1,iθ+  to com-

pute the integral ( )1| ,iP c H ,G,M r .  

This refinement is performed in the innermost loop of the likelihood weighting 
procedure. Since the computation of eq. (8) requires on average  d  multiplications 
and additions—where d  denotes the average out-degree of the commuting graph 
G—it follows that the running time of BARD-C is given by 

( )BARD C BARDT O d T− = × . (9) 

For the block group-level commuting graph of the Pittsburgh region that we cre-
ated from the census data, d is approximately 150. Considering that BARD takes 
approximately 10 minutes to run for the Pittsburgh region in a commodity single-
processor computer, the running time of the just-described version of BARD-C 
(which is nearly 25 hours) is too long for practical purposes.  

We found a way to reduce the running time of BARD-C to less than 1 hour without 
significantly reducing the accuracy of the computation. The first improvement in the 
time complexity of BARD-C was achieved by investigating the structure of the arc 
weights in the graph G . We noticed that, on average, for each tract i  nearly 70% of 
the total out-going commuting flow was concentrated in the largest 1/3 of the out-
going flows. Hence, a reasonable method to reduce the average out-degree of G  
would be to sort the outgoing arcs of each tract in decreasing order and then take into 
account only the largest K  flows, where K is a cutoff value. We used a cutoff value 
of 50 to obtain a reduction by a factor of 3 in the running time of BARD-C. The trun-
cated graph still contained nearly 70% of the total flow in the original graph. To ob-
tain an additional reduction in BARD-C’s running time, we reduced the number of 
Monte Carlo repetitions in the likelihood weighting procedure from 200,000, which is 
the default used in BARD, to 20,000. With 50d =  and 20,000 Monte Carlo repeti-
tions, BARD-C takes nearly 45 minutes to run for the Pittsburgh region in a single-
processor machine with a 3GHz processor and 2Gb of main memory.  

4   Experimental Comparison of BARD and BARD-C 

We performed an experiment to compare the performances of BARD and BARD-C 
on semi-synthetic outbreaks generated with the BARD-C simulator. The historical ED 
data for our experiment were provided by 10 EDs operated by one health system. The 
ED data represented nearly 30% of all ED visits in the surveillance region. We  
divided the total period spanned by the historical ED data into a training period  
(1 January 1999 to 31 December 2004), which was used to train BARD’s detection 
algorithm, and a test period (1 January 2005 to 31 December 2005) used in the 
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evaluation experiment. Finally, the weather data was provided from the National 
Weather Service, while the populations and central zip codes came from the ESRI 
ArcGIS Desktop product. 

4.1   Experimental Design 

A total of 100 semi-synthetic outbreaks were generated using the BARD-C simulator. 
For all simulations, the quantity q  was fixed at 0.5 kg. The release time t  was chosen 
uniformly at random from the test period, i.e., the year 2005. The parameters x , y , 
and h  were drawn from their prior distributions. Each semi-synthetic outbreak was 
supplied as input to the BARD and BARD-C detectors. The detectors were executed 
42 times on each simulation in increments of 4 hours: the first execution began 4 
hours after the release, the second execution 8 hours after the release, and so on. 

The detection performance of both detectors was measured through the time-to-
detection, or timeliness, defined as the interval from the release time to the detection 
time. The timeliness is typically measured as a function of the alarm threshold, i.e., 
the threshold of the alarm statistic employed by the detector to discriminate between 
the non-outbreak and outbreak situations. For a given threshold, an alarm is consid-
ered to be false if the alarm statistic exceeds the threshold prior to outbreak onset. The 
false alarm rate (for a given alarm threshold) is the number of false alarms that occur 
per unit of time. Plotting timeliness against the false alarm rate is known as Activity 
Monitoring Operating Characteristic (AMOC) analysis [12]. The characterization 
performance of both detectors was measured through , , ,t x y h  and q  (absolute) er-
rors. The t  error is defined as the interval between the release time and the estimate 
of the release time produced by BARD. The , ,x y h , and q  errors are defined analo-
gously. We plotted each characterization metric against the time interval from the 
release to the beginning of BARD’s execution, which we call the time to execution.  

Since BARD leverages a model of the respiratory disease caused by inhalational 
anthrax in both simulation and detection, a rigorous evaluation of BARD’s perform-
ance requires a sensitivity analysis on each parameter of the disease model (these 
parameters were listed in Section 2.1). Such a sensitivity analysis was carried out by 
Hogan et al. [3]. The goal of our experiment, however, is to simply compare BARD 
with BARD-C, which differs from BARD only in that it adjusts the detection algo-
rithm so as to account for commuting. Since a priori we do not expect commuting to 
interact with any of the disease-specific parameters, we believe that the difference 
between the performances of BARD and BARD-C would be the same regardless of 
the values of the disease-specific parameters used in simulation. For this reason, here 
we do not perform a sensitivity analysis with respect to the parameters of the disease 
model. Instead, in every simulation we set the disease-specific parameters at their 
baseline values, i.e., the values used in detection. 

4.2   Results 

Figure 1 shows the AMOC analysis for timeliness. As seen, BARD-C’s timeliness is 
nearly two hours smaller than BARD’s timeliness at every false alarm rate. A statisti-
cal test showed that, for each false alarm rate, the mean timeliness of BARD-C was 
statistically different from the mean timeliness of BARD, at the 0.05 level. 
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Fig. 1. AMOC curves for the timeliness of BARD and BARD-C detectors 

Next, we turn to the characterization performance of BARD and BARD-C. First, 
we note that the performances of both detectors with respect to the q  error and h  
error differed markedly from their performances with respect to the three remaining 
characterization metrics: , ,x y  and t  error. Unexpectedly, the posterior means of the 
release parameters q  and h  did not appear to converge as the time to execution in-
creased. We leave the investigation of this unexpected outcome as a topic for future 
research. In the remainder of this section we focus on the , ,x y  and t  errors.  

Figure 2 shows box plots and plots of the medians of the x  error for BARD and 
BARD-C. In each plot the horizontal axis shows the time-to-execution. The samples 
from which the box plots were constructed correspond to the different simulations. 
Several conclusions can be derived from Figure 2. First, the x  error of both BARD 
and BARD-C converges to relatively small values as the time to execution increases. 
Second, the errors of BARD and BARD-C appear to converge around the same time 
and nearly 10-16 hours after the detection. Third, the sampling distribution of the x  
error is right-skewed for both detectors and in almost each execution of BARD and 
BARD-C there is a small number of outliers. Fourth, after the convergence, the me-
dian of the x  error for BARD-C is nearly 2 kms smaller than the median of the x  
error for BARD.  

Similar comments can be made for the y  and t  errors, whose plots are omitted 
due to space restriction. The post-convergence median of the y  error for BARD-C 
was nearly 0.5 km smaller than the median for BARD; for the t  error the post-
convergence difference of the medians was nearly 20 minutes.  

Figure 3 show the results of testing for sameness of characterization performance 
between BARD and BARD-C. The null hypothesis of this test asserted that BARD 
and BARD-C have identical locations of the distributions of x  error (a), y  error (b), 
and t  error (c). The testing was carried out after each of the 42 runs of BARD and 
BARD-C. Due to the non-normality of the characterization errors, the Wilcoxon 
signed rank test was employed to perform the testing. Figure 3(a) plots the p-values 
corresponding to the x  error against the time-to-execution. It can be seen that after 
the convergence of the x  error, the p-values of the test remain well below the 0.05 
significance level (the dotted horizontal line). Similar comments can be made for the 
y  error. For the t  error the convergence of the p values is not as clear as for the x  
and y  errors. 
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Fig. 2. Box plots and plots of the medians of the x  error for BARD and BARD-C detectors 
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Fig. 3. P-values of the test for sameness of characterization performance between BARD and 
BARD-C as a function of the time-to-execution 

5   Discussion 

We proposed and evaluated a method for integrating a commuting model with BARD. 
To bound the running time of the refined detector, BARD-C, we made a number of 
simplifications at the expense of the accuracy of the computation. In spite of these 
simplifications, BARD-C performed better than BARD on a large set of semi-
synthetic outbreaks that also incorporated commuting: BARD-C’s timeliness was 
nearly 2 hours smaller than BARD’s, BARD-C’s x  error was 1.5-2 kms smaller than 
BARD’s and BARD-C’s y  error was nearly 0.5 km smaller than BARD’s.  In light of 
earlier studies [2], which estimated that a delay of just one hour in detection results in 
as much as $250  million additional economic costs, this performance improvement is 
quite significant. We conclude that it is very important to study the problem further 
and, ultimately, to find the best tradeoff between efficiency and accuracy of the 
model. 
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Appendix 

Here, we outline the steps we followed to derive eq. (8). In the subsequent derivation, 
in addition to the four temporal parameters * *

1, 1, 1, 1,, , ,i i i iθ θ θ θ+ +  (Section 3.2) we will also 

need the two non-temporal parameters *
iθ and iθ . The former denotes the probability 

that a person who lives in tract i  will ever visit an ED with RCC due to exposure to 
anthrax. The latter denotes the probability that a person who is exposed in tract i  will 
ever visit an ED with RCC due to exposure to anthrax. 

1. First, we derived a relationship between the non-temporal parameter *
iθ  and  

the non-temporal parameters , ( )j j Out iθ ∈ . To derive this relationship, given in  

eq. (10), we conditioned on the exposure tract. 

*

( )

ij
i j

j Out i i

n

n
θ θ

∈

= ∑ . (10) 

2. Second, it can be shown that the following relationship holds between the tempo-
ral parameter 1,iθ+  and the corresponding non-temporal parameter iθ : 

[ ]1, ( | , ) ( 1 | , )i i i i i iF Fθ θ τ µ σ τ µ σ+ = − − . (11) 

Here F  denotes the CDF of a lognormal distribution with parameters ,i iµ σ  corre-

sponding to the dose of spores in tract i , and τ  is the interval that has elapsed from 
the hypothetical release time t  to the beginning of the algorithm execution. Eq. (11) 
can be derived by conditioning (see [3], p. 5237). 
3. Third, we derived a relationship between the temporal parameter *

1,iθ+  and the 

corresponding non-temporal parameter *
iθ , using a combination of the conditioning 

techniques employed in the preceding two steps. 

( )* *
1,

( )

( | , ) ( 1 | , )ij
i i j j j j

j Out i i

n
F F

n
θ θ τ µ σ τ µ σ+

∈

⎡ ⎤
⎢ ⎥= − −⎢ ⎥⎢ ⎥⎣ ⎦
∑ . (12) 

4. Combining eqs. (10) and (12) yields 

( )*
1,

( ) ( )

( | , ) ( 1 | , )ij ij
i j j j j j

j Out i j Out ii i

n n
F F

n n
θ θ τ µ σ τ µ σ+

∈ ∈

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∑ ∑ . (13) 

Eq. (13) gives a rigorous method that can be employed in BARD-C to compute the 
adjusted parameters *

1,iθ+  in terms of quantities that are computed by BARD. In this 

paper, to reduce the time complexity of BARD-C, we simplified eq. (13) by assuming 
that ( | , ) ( 1 | , )j j j jF Fτ µ σ τ µ σ− −  does not vary with j . This assumption leads to 

eq. (8) given in the body of the paper and to a reduction of the running time of 
BARD-C by at least a factor of 2. 
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Abstract. Early detection of bio-terrorist attacks is an important problem in public 
health surveillance. In this paper, we focus on the detection and characterization 
of outdoor aerosol releases of Bacillus anthracis. Recent research has shown 
promising results of early detection using Bayesian inference from syndromic 
data in conjunction with meteorological and geographical data [1]. Here we 
propose an extension of this algorithm that models multiple days of syndromic 
data to better exploit the temporal characteristics of anthrax outbreaks. 
Motivations, mechanism and evaluation of our proposed algorithm are described 
and discussed. An improvement is shown in timeliness of detection on simulated 
outdoor aerosol Bacillus anthracis releases. 

Keywords: Anthrax outbreak, syndromic surveillance, Bayesian inference, 
spatial-temporal pattern recognition. 

1   Introduction 

In the event of an outdoor aerosol release of B. anthracis, it is critical that the release be 
detected and characterized quickly.  A small amount of B. anthracis spores release 
could cause mortality in hundreds of thousands if not detected in a timely manner [2]. 
However, if it is detected early, vaccines and antibiotics could be deployed to 
significantly reduce mortality. A single hour of improvement in timeliness of detecting 
an aerosol release of B. anthracis could save as much as $250 million of economic cost 
[3]. In addition, early characterization of the release (location, time, affected area, etc.) 
enables public health intervention efforts to focus on the likely affected areas to further 
reduce mortality and economic cost. Syndromic surveillance is an alternative to case 
identification that uses less diagnostically-precise data from hospital emergency 
departments (EDs) to try to detect outbreaks earlier.  [5, 6]. The common tools used by 
health departments to analyze ED visit data in order to detect disease outbreaks includes 
univariate time series analysis and spatial scan statistics [7-10]. However, these tools do 
not account for the unique pattern of disease that would likely result from an aerosol 
release of anthrax.  In such a release scenario, weather conditions such as wind 
direction, wind speed, and atmospheric stability would influence the direction and shape 
of spore dispersal, and ultimately affect the location, shape and size of the affected area. 
The Bayesian Aerosol Release Detector (BARD) is an algorithm that uses 
meteorological data, in addition to syndromic and geographical data, to detect and 
characterize aerosol releases of anthrax [1]. Given any set of release parameters (time, 
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location and quantity), BARD can calculate the probability of the observed ED visit 
counts over a spatial region in the last 24 hours using a dispersion model, an infection 
model and a visit delay model. BARD then calculates the posterior probability of a B. 
anthracis release by integrating all possible release scenarios with their corresponding 
prior probabilities and applying Bayes’ rule. BARD also computes the expected release 
time, location and quantity by weighting each set of release parameters with their 
posterior probability.  

One potential limitation of BARD is that only the ED visits in the most recent 24 
were taken into account to detect outbreaks  While historical visit data are utilized to 
specify prior distributions for background visit rates, recent visits that occurred more 
than 24 hours ago are not used to compute the posterior probability of a release or the 
expected release parameters.  Hence BARD does not take full advantage of the 
temporal information available in the ED visit data.   

In this paper we propose an extension of BARD called BARD-MD that models 
multiple days of data. As an extension of BARD, BARD-MD computes the posterior 
probability of an anthrax outbreak and its expected release parameters. We compare the 
performance of BARD-MD to BARD in terms of timeliness of detection, false alarm rate.  

2   Methods 

In this section we describe the model and inferential method of BARD-MD.  We also 
indirectly describe BARD, as BARD is a special case of BARD-MD that uses n=1 days 
of ED visit data.  Greater detail on the BARD model can be found in Hogan et al, 2007.  

2.1   Data 

BARD-MD uses three types of data for outbreak detection:  biosurveillance data (B), 
geographic data (G), and meteorological data (M).  The biosurveillance data are 
organized into an m x n matrix B containing the ED visit data for the most recent n 
days for the m zip codes in the surveillance data.  Specifically, Bij is the count of ED 
visits with respiratory complaints for zip code i during the time interval between 24×j 
hours ago and 24×(j-1) hours ago. The geographic data, represented by G, include the 
population and center coordinates for each zip code, and the mean and standard 
deviation of historical ED visit counts for each zip code, month of year and day of 
week combination in the training data. The meteorological data are arranged in a 
matrix M whose rows correspond to timestamps at which the meteorological 
observations were made and columns correspond to the particular variables observed. 
Specifically, the meteorological variables are wind speed, wind direction, and 
atmospheric stability class. Atmospheric stability class is a measurement of 
atmospheric turbulence, a key determinant of atmospheric dispersion of substances. 

2.2   Hypotheses 

BARD-MD entertains two mutually exclusive hypotheses.  The null hypothesis 0H  is 

that ‘background’ respiratory disease that we have seen historically is the only 
‘respiratory disease’ causing illness in the geographic region. The alternative 
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hypothesis 1H  is that both background respiratory disease and an outbreak of 

inhalational anthrax due to a release of B. anthracis are causing illness over the most 

recent n days.  It is important to note that 1H  includes the event that the release 

occurred more than n days ago but caused illness within the most recent n days.  The 

hypothesis 1H  also includes the event that the release occurred within the most recent 

n days even though background respiratory disease is alone responsible for respiratory 
visits prior to the release.   

In addition to computing the posterior probability of 1H , BARD-MD computes the 

Bayes’ Factor for 1H  compared to 0H . The Bayes’ Factor is the ratio of the posterior 

odds of 1H  to the prior odds of 1H , and is equivalent to the marginal likelihood ratio 

of 1H  to 0H . (Kass & Raftery, 1995): 

1 0 1

1 0 0,

( | , , ) / ( | , , ) ( | , , )

( | , ) / ( | , ) ( | , )

P H B G M P H B G M P B H G M
BF

P H G M P H G M P B H G M
= =  (1) 

The Bayes’ Factor quantifies the evidence in favor of 1H  that was provided by the 

visit data, without requiring a careful assessment of the prior probabilities of 0H  and 

1H .  We now turn to the problem of calculating 0,( | , )P B H G M  and 

1( | , , )P B H G M . 

2.3   The Null Model 

The model for B under the null hypothesis is described using an n x m matrix of 

parameters 0θ , where 0, ,i jθ  denotes the probability that a randomly selected resident 

of zip code i visited the ED with a respiratory complaint during the time interval 

between 24×j hours ago and 24×(j-1) hours ago.  We assume that, under 0H , B is 

conditionally independent of M given G and 0θ : 
0 0 0 0( | , , , ) ( | , , )P B H G M P B H Gθ θ= . 

This assumption is tantamount to asserting that, in the absence of an aerosol release, if 
we know the historical mean and standard deviation of visit counts for the current 
month of year, day of week, and zip code, then the meteorological data provides no 
additional information about the background visit counts.  We further assume that 

,{ }i jb  are conditionally independent under 0H  given the geographic data G and 0θ : 

0 0 0 0
1 1

( | , , ) ( | , , )
m n

ij
i j

P B H G P b H Gθ θ
= =

= ∏∏  (2) 

Under 0H , each ,i jb  given G and 0θ  is modeled as a binomial process with size 

equal to the population of the zip code, in , and success probability 0, ,i jθ .  We assume 
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that the 0, ,i jθ  values are conditionally independent given G and use a method of 

moments approach described in Hogan et al., 2007 to derive a beta prior distribution 

for each 0, ,i jθ  given G.  See Hogan et al., 2007 for more details on prior 

specification. Observe that the assumption of conditional independence of 0, ,i jθ  is 

only reasonable when n <= 7, because the of the week effect is one of the factors 
taken into account to compute the beta priors. This assumption holds for the 
applications in this paper. 

2.4   The Alternative Model 

The alternative hypothesis 1H  is that there was an aerosol anthrax release that caused 

respiratory ED visits within the previous n days.  We characterize the release with a 
parameter vector r that includes the time, location, and height of the release, as well as 
the quantity of anthrax spores released.  The alternative model asserts that under 

1H ,{ }ijb  are conditionally independent given G, M, 0θ , and r, with each ijb  

modeled as a binomial process.  Specifically, the model asserts that 

, 1 0 1, ,( | , , , , ) ~ ( , )i j i i jb H G M r Bin nθ θ  (3) 

where 1, ,i jθ  is a deterministic function of G, M, 0θ  and r that represents the 

probability under 1H  that an individual in zip code i visits ED with respiratory 

complaints j days ago. Because 1H  is the hypothesis that both background respiratory 

disease and an outbreak of inhalational anthrax are responsible for ED visits, we 

assume that these causes are independent. We compute 1, ,i jθ  as: 

1, , 0, , 1, ,1 (1 )(1 )i j i j i jθ θ θ += − − − , (4) 

where 1, ,i jθ +
 is the probability that a resident of zip code i visits an ED with a 

respiratory complaint j days ago because of inhalational anthrax. When the release 

time is less than j days ago,  1, ,i jθ +  is defined to be zero because the release cannot 

be responsible for ED visits prior to the release. Otherwise, when the release time is at 

least j days ago, 1, ,i jθ +
 is modeled as a function of the dose of spores d that an 

individual inhales and the amount of time t that has elapsed since he or she inhaled 
the spores. The dose d is derived from the Gaussian plume model of dispersion and an 
estimate of minute ventilation (the volume of air that an individual breathes per 
minute). Given any set of release parameters r, the Gaussian plume model of 
atmospheric dispersion uses meteorological and geographic data to compute the time-
integrated concentration at an arbitrary downwind location due to a near-
instantaneous release of a substance. The amount of time that elapses from spore 
inhalation to ED visit is specified by an infection model that relates the incubation 
period (time to symptom onset) to the dose of spores inhaled, and a visit delay model 
accounts for the amount of time that elapses from symptom onset to the ED visit.  See 
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Hogan et al., 2007 for more detail on the Gaussian plume model, the infection model, 
and the visit delay model.  

The prior distribution for 0θ  under 1H  is the same as under 0H .  For the release 

parameters (release coordinates x, y, release height h, release amount Q and release 

time t), we assume that they are mutually independent under 1H  and independent of 

G, M and 0θ : 

1 0 1 1 1 1( | , , , ) ( , ,| ) ( | ) ( | ) ( | )P r H G M P x y H P h H P Q H P t Hθ = � � �  (5) 

We use uniform priors for all of the release parameters except the height of the 
release, for which we use a probability function that decreases as values for h increase 
(see Appendix A3 in [1]). The location prior is uniform over the surveillance region, 
the quantity of released spores is uniform between 0.1 and 10 kilograms, and the time 
of release prior is uniform between 48 hours and 168 hours ago. As described in 

Hogan et al., the integral over 0θ  has a closed form solution (see Appendix A2 in 

[1]), and we use a Monte Carlo integration method called likelihood weighting to 

numerically integrate over r to calculate 1( | , , )P B H G M . The posterior 

expectation of the release location, height, time, and quantity are also calculated 
during the Monte Carlo integration. 

3   Evaluation 

We evaluate BARD-MD’s ability to detect and characterize an aerosol anthrax release 
using semi-synthetic analysis in which anthrax releases are simulated and the 
resulting cases are added to real background ED visit data.  We also compare the 
performance of BARD-MD when it runs every four hours using n=1 (BARD), n=2, 
and n=3 days of visit data using the same sets of semi-synthetic data.    

3.1   Methods 

Datasets. The evaluation region for this study is Pittsburgh, specifically a circular 
region centered on downtown Pittsburgh that contains 277 zip codes.  The historical 
ED data used in this study were actual ED visits to ten EDs operated by one health 
system. We divided the historical ED visit data into training and test sets. The training 
set—which we used to parameterize BARD-MD’s beta prior distributions—spanned a 
three-year time period from January 1, 2002 to December 31, 2004. The test set—into 
which we injected simulated anthrax-related ED visits—spanned one year from 
January 1, 2005 to December 31, 2005. The meteorological data we used are from the 
National Weather Service (NWS), which included wind speed and wind direction, but 
not stability class. We computed stability class with the available data using Turner’s 
method [11]. The populations and central zip code points that we used in this study 
are from the ESRI® ArcGIS™ Desktop product. 

Simulations. We simulated anthrax releases in the same way as BARD (Hogan et al., 
2007). The following procedure was repeated fifty times to simulate fifty 0.1 
kilogram releases and fifty 0.5 kilogram releases. 
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1. Select a release date and time uniformly from the interval 1/1/05-12/24/05, 
which is the interval covered by the test set of historical data but excluding the last 
seven days to ensure that the outbreak can fully manifest before the end of the test 
data.  Also obtain the meteorological data for the selected date and time. 

2. For release quantities of Q=0.1 kilograms and 0.5 kilograms, sample values for 
x, y, and h from their conditional prior distributions given Q and t. For the simulated 
outbreaks, we use the same non-uniform prior as BARD over x and y, which favors 
release locations desirable for their impact in terms of number of individuals infected.  
Specifically, the prior for the location of the release, conditional on the quantity, time 
and height of the release is proportional to the expected number of ED visits that 
would result from the release [1].   

3. For each zip code in the region, use the Gaussian plume model, the infection 
model, and the visit delay model to simulate the number of ED anthrax visits and their 
presentation times.  This simulation accounts for the facts that (1) not every case of 
inhalational anthrax would visit one of the 10 EDs in our historical dataset and (2) our 
historical dataset contains data on approximately 30% of ED visits in the Pittsburgh 
evaluation region. 
 

Measurements. We measure false alarm rate, timeliness of detection and 
characterization of the releases for BARD-MD (two days and three days) and BARD. 
BARD-MD (two days) runs on the 24-hour aggregated ED counts from the last 48 hours. 
BARD-MD (three days) runs on the 24-hour aggregated ED counts from the last 72 
hours. BARD runs on the aggregated ED counts of the last 24 hours. We defined a false 
alarm as an event when the Bayes’ factor (likelihood ratio) of an outbreak exceeds an 
alarm threshold in the absence of an outbreak. The false alarm rate is then the number of 
false alarms that occur per year. To estimate the false-alarm rate, we ran BARD-MD 
(two days), BARD-MD (three days) and BARD with no simulated ED visits added to the 
baseline. These algorithms were run on the baseline data every four hours during January 
1, 2005 to December 31, 2005. The algorithms were also run on the semi-synthetic data 
at the same four hour intervals a total of 42 times, starting from the first four-hour 
interval following the release and ending at a four-hour interval approximately seven 
days following the release.  To measure timeliness of detection, we calculated the length 
of duration from simulated release to the first time when the Bayes’ factor exceeded the 
alarm threshold. Then we took the mean of timeliness for each 50 simulations with 0.1 kg 
release and 0.5 kg release. For most event detection algorithms, there is a tradeoff on the 
performance between false alarm rate and timeliness of detection. Using the same 
method as previous researchers used to evaluate outbreak detection algorithms [1, 12, 
13], we conducted an AMOC analysis [14], graphing the false-alarm rate versus time to 
detection. Our analysis used false alarm rates that ranged from 1 per year to 36 per year.  
Because we were interested in evaluating the effect of using multiple days’ data vs. a 
single day’s data for outbreak detection, we held all parameters in BARD constant across 
the simulations, BARD, and BARD-MD to isolate this effect.  For a sensitivity analysis 
of BARD's performance, see [1]. 

4   Results  

We compare the timeliness of detection and false alarm rate for BARD-MD (two 
days), BARD-MD (three days) and BARD in the AMOC plots below in Figure 1 for  
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Fig. 1. Activity Monitoring Operator Characteristic (AMOC) curves for BARD (solid line), 
BARD-MD with two days of data (---), and BARD-MD with three days of data (.-.) for 0.1 kg 
releases (Figure 1a) and 0.5 kg releases (Figure 1b). The horizontal axis of each graph is the 
false alarm rate per year, and the vertical axis is the time to detection in hours.   
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Fig. 2. 95% confidence bands for the difference in timeliness between BARD and BARD-MD 
with two days of data for 0.1 kg releases (Figure 2a) and 0.5 kg releases (Figure 2b) 
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0.1 kg and 0.5 kg releases. All algorithms successfully detected the 100 simulated 
outbreaks. 

For both release quantities, our proposed algorithm BARD-MD using two days of 
data outperforms BARD in timeliness of detection when the number of false alarms is 
high and is about the same as BARD when the number of false alarms is low. At the 
high end when 36 false alarms are allowed, BARD-MD alarms 6 to 8 hours earlier 
than BARD.  While BARD-MD with three days of data has better detection 
timeliness than BARD, it has worse timeliness than BARD-MD with two days of 
data.  The remaining results that we present focus on the difference between BARD-
MD with two days of data and BARD. 

In Figure 2 we display point-wise confidence bands for the difference in timeliness 
between BARD and BARD-MD with two days of data.  The confidence bands 
demonstrate that the improvement in timeliness is statistically significant at the 0.05 
level at false alarm rates of 11 and higher per year for a 0.1 kg release, and at false 
alarm rates of 9 and higher per year for a 0.5 kg release. 

5   Discussion 

As we expected, taking more days of ED data into account does help in detecting 
simulated B. anthracis releases earlier. For lower false alarm rates, we did not find a 
statistically significant difference in the mean timeliness of detection for BARD-MD 
and BARD.  It is unknown whether this finding is due to there being no real 
difference between the two algorithms at a lower false alarm rate, or due to using an 
insufficient number of simulation runs required to detect the difference.  At higher 
false alarm rates, BARD-MD with two days of data detected simulated anthrax 
outbreaks earlier than BARD in our evaluation. We further investigated why BARD-
MD with three days of data performs worse than BARD-MD with two days of data. 
The AMOC curves show (Figure 1), for BARD-MD the average timeliness of 
detection is 66 hours after release with the smallest false alarm rate of one per year.  
At that time of detection, BARD-MD with two days of data would use all ED visits 
that occur between 18 and 66 hours after the release while BARD-MD with three 
days of data would use visits that occur between -6 and 66 hours after the release.  
However, among the 3449619 simulated anthrax-related ED visits in the 100 outbreak 
scenarios only one case had an ED visit time within 24 hours of the release of B. 
anthracis spores.  Thus, the additional day of data that is analyzed in the BARD-MD 
three days version compared to the BARD-MD two days version contains almost 
exclusively noise due to background respiratory disease and essentially no genuine 
signal of an anthrax outbreak. 

Due to the rarity of real anthrax outbreak data, we evaluated both algorithms using 
synthetic data that was generated by injecting simulated anthrax-related ED visits into 
real baseline data. During a real anthrax outbreak, we would expect the detection time 
of both BARD and BARD-MD to be later than we found in our laboratory evaluation. 
Thus by the time of detection during a real outbreak, the ED visit data are likely to 
exhibit a stronger temporal pattern than in the laboratory evaluation, which we 
conjecture could result in a greater improvement in detection timeliness for BARD-
MD compared to BARD.  
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6   Conclusion 

To detect aerosol release of B. anthracis earlier, we developed an extension to the 
Bayesian Aerosol Release Detector algorithm, which we called BARD-MD. It uses 
multiple days of ED visit data to better account for temporal characteristics of an 
anthrax outbreak. We evaluated our algorithm’s performance and compared it to 
BARD. We found that our proposed extension of BARD improves the timeliness of 
detection at high false alarm rates. Overall, BARD-MD is an important enhancement 
of BARD, and its use could result in reduced mortality and cost in the unfortunate 
event of an aerosol anthrax release.  
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Abstract. In this paper, we propose a Z-Score Based Multi-level Spatial 
Clustering (ZMSC) algorithm for the early detection of emerging disease 
outbreaks. Using semi-synthetic data for algorithm evaluation, we compared 
ZMSC with the Wavelet Anomaly Detector [1], a temporal algorithm, and two 
spatial clustering algorithms: Kulldorff's spatial scan statistic [2] and Bayesian 
spatial scan statistic [3]. ROC curve analysis shows that ZMSC has better 
discriminatory ability than the three compared algorithms. ZMSC demonstrated 
significant computational efficiency—1000x times faster than both spatial 
algorithms. Finally, ZMSC had the highest cluster positive predictive values of 
all the algorithms. However, ZMSC showed a 0.5-1 day average delay in 
detection when the false alarm rate was lower than one false alarm for every 
five days. We conclude that the ZMSC algorithm improves current methods of 
spatial cluster detection by offering better discriminatory ability, faster 
performance and more exact cluster identification. 

Keywords: Spatial clustering, outbreak detection, biosurveillance. 

1   Introduction 

Disease outbreaks, either naturally occurring or caused by bioterrorism attacks, can 
result in significant morbidity, mortality and economic loss. Most outbreaks start in a 
small area and then expand to a larger area composed of geographically contiguous 
regions. For example, the SARS outbreaks of 2003 started in a Hong Kong apartment 
building and then quickly spread to all of Hong Kong and several countries in Asia. 
SARS claimed loss of hundreds of lives and cost billions, which leads to the urgency 
to detect outbreaks when they are small. This urgency has led to a subfield of 
epidemiology that systematically studies methods of spatial and temporal-spatial 
outbreak detection. 

The two main approaches for outbreak detection are temporal analysis and spatial-
temporal analysis. Temporal analysis using time series algorithms is the most popular 
approach. Time series algorithms include control chart, moving average (e.g., 
Exponentially Weighted Moving Average [4]), cumulative sum (CuSUM) [5], 
regressions [6], the Bayesian change-point detector [7], and the Wavelet Anomaly 
Detector (WAD) [1]. In this paper we compare the performance of ZMSC with WAD. 
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WAD uses wavelet transform, a non-parametric algorithm suitable for non-stationary 
time series, to capture the underlying time series trend. An example of time series 
analysis is shown in Fig. 1 where two years and eight months of anti-diarrhea 
medication sales are analyzed using WAD to determine the underlying time series trend.  

 

Fig. 1. A time series and its wavelet transform. The upper figure is a time series of over-the-
counter (OTC) sales in the anti-diarrhea category over 2004-2006. The middle figure shows the 
expected values computed by wavelet transform. The bottom one is the residuals after 
subtracting the expected values from the observed values. 

Spatial-temporal algorithms have been developed to take spatial distribution into 
account. In general the additional spatial distribution information allows spatial 
algorithms to achieve lower false alarm rates than temporal algorithms. Current state-
of-the-art spatial algorithms include Kulldorff's spatial scan statistic (KSSS), 
Bayesian spatial scan statistic (BSSS) and Tango and Takahashi's flexible spatial 
scan statistic (FSSS). In addition, there are some other algorithms using classical 
clustering approaches, such as Risk-adjusted Nearest Neighbor Hierarchical 
Clustering (RNNH) [8] and support vector machines (SVMs) [9]. 

To focus on the new algorithm we developed, we briefly describe the three spatial-
temporal algorithms based on scan statistics: KSSS, FSSS, and BSSS. KSSS [2, 9] 
scans a region by imposing circular or elliptic windows with different sizes, shapes 
and locations. The areas within a scanning window are considered a potential cluster. 
This algorithm finds a cluster with the highest likelihood ratio of having an outbreak 
in the cluster (H1) vs. no outbreaks (H0). FSSS [10, 11] is an improvement over KSSS 
by relaxing the artificial shape limitation of KSSS. It finds the cluster with any shape 
composed of k  connected unit areas. BSSS [3] employs Bayes’ rule to compute the 
posterior probability for each spatial region using a Poisson-Gamma model. The 
search window in BSSS is a rectangle (aligning with x and y axes) with varying width 
and height within a mm ×  grid. BSSS identifies a region with the greatest posterior 
probability of having an outbreak; thus, unlike KSSS, it does not require a 
randomization test.  

There are some limitations to the KSSS, FSSS and BSSS. First, computation time 
for these algorithms is high. The three algorithms employ exhaustive searches for 
clusters, which dramatically increases computation time. Moreover, KSSS and FSSS 
require a randomization test to determine the significance of a detected cluster (i.e.,  
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p-value), which makes them intractable when the study region covers a large region 
such as one or more states. Secondly, KSSS and BSSS depend on the use of simple, 
fixed symmetrical shapes of regions. As a result, when the real underlying clusters do 
not conform to such shapes, the identified regions are often not well localized. [9] 

Since it is public health interest to identify a clustered outbreak region based on 
temporal and spatial information, in this paper we will primarily focus on the 
performance comparison between ZMSC and two spatial-temporal algorithms--KSSS 
and BSSS--due to the wide acceptance of KSSS in public health surveillance and the 
recent innovative approach of BSSS. However, many biosurveillance systems still use 
time series algorithms for outbreak detection. Thus, we also include a time series 
algorithm WAD to serve as a baseline for the performance comparison in this study. 

2   Methods 

We propose a cluster detection algorithm that does not require exhaustive search. We 
first compute the z-score, to measure the degree of risk, for each area. We then find the 
subsets of the entire study area which have a high risk of outbreak. Finally, we identify 
clusters based on the adjacency relationship between any two areas in the subsets. 

2.1   Z-Score Based Multi-level Spatial Clustering Algorithm (ZMSC) 

Z-Score Based Risk Rate. We define 
ρZ  as a subset of the entire study area (Z ). It 

is determined by a threshold value ρ  as below:  

},:{ Z∈≥= iii zrzZ ρρ
 (1) 

where 
ir  represents the risk rate in area iz . A risk rate can be computed as the ratio 

iii bcr /=  for area iz , where ic and ib  represent the observed cases and expected 

cases, respectively. However, such ratio only represents how far away the observed 
departs from the expected; it fails to take into account the degree of the deviation. 
Therefore, we propose in our model to compute the risk rate using z-score, 

iiii sbcr /)( −=  instead, where is  is an estimate of standard deviation σ  of the 

residuals computed by subtracting the expected values from the corresponding 
observed values in time series. The computation of the risk rate or each unit study 
area is the first-stage analysis of ZMSC. 

Subsets with Multiple Risk Levels. The areas in each sub-dataset are determined 

depending on the threshold value ρ  for each risk level. pρ  is assigned with the p-th 

percentile of the values in the set of },{ Z∈ii zr , each of which represents the risk 

degree of having an outbreak in an area iz . ZMSC sets 
maxmin ,..., ppp =  with intervals 

p∆ . For instance, if %95max =p , %50min =p  and %5=∆p , the algorithm will get 10 

sub-datasets with different risk levels ranging from 50-th percentile to 95-th 
percentile. This scheme only selects areas with elevated risks ( pir ρ≥ ) to speed up 

cluster search. 
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Clustering on Subsets. For each subset 
ρZ , we divide individual areas into several 

clusters based on area adjacency constrain. We define an adjacency threshold η . The 

two areas iz  and jz  are said to be adjacent to each other (there is an edge between 

them) only if the minimal distance 
ijd  between these two areas is less than or equal to 

η  (i.e. η≤ijd ). We restricted adjacency to connected areas in this paper (i.e., 

0=η ). Thus, if iz  and jz  share a borderline, the two areas become adjacent. The 

final cluster }{ iz , then, comprises a number of areas where for any two areas within 

the same cluster there is a path between them. For any two different clusters, there is 
no path from any area in one cluster to any area in the other. 

Significance Analysis of a Cluster. The algorithm calculates the p-value of each 
cluster by combining all the normalized time series of its inclusive areas (e.g., ZIP 
codes). We test the hypothesis that there is an active elevated cluster happening on the 
current day within a particular region }{ izS =  against there being no such cluster. 

For each output cluster S  we calculate the significance score 
Sp . We compose a 

new time series for S  by summing up all the normalized time series in S . Each value 
in a normalized time series is a z-score, computed as 

iiti scc /)( , − , Tt ,...,1= , where 
tic ,
 

is the observed count in area iz  on day t ; Tcc
T

t
tii /

1
,∑

=

=  is the mean value of the time 

series of area iz , and is  is the estimated standard deviation of the time series. Hence, 

the new time series of region S  with length T  can be written as below:  
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The algorithm applies wavelet transform to the combined normalized time series of 
each cluster to compute the corresponding expected value 

tSB ,
. With the expected 

values available, the algorithm then computes z-scores of all previous days and the 
current day in time series, 

StStStS sBCR )( ,,, −= . Similar with individual areas, 
tSR ,
 

represents the degree of the deviation of the observed value from the expected in the 
aggregated region S at day t . The score 

Sp  is computed as the ratio, TMpS )1( += , 

where M  is the number of values greater than or equal to 
TSR ,

 in the set 

}1,...,1,{ , −= TtR tS
. A significant 

Sp  indicates an emerging cluster occurring in the 

region S . 

2.2   Algorithm Evaluation 

OTC Pharmaceutical Sales Data. The dataset we used in this study contains 44 
months of over-the-counter (OTC) anti-diarrhea medication sales data collected by 
the National Retail Data Monitor at the University of Pittsburgh with purchase dates 
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between Jan. 1, 2004 and Aug. 31, 2007 for the state of Pennsylvania. After filtering 
out the ZIP code areas with average daily sales less than 5 medications (these ZIP 
code areas had a large number of days with no sales) we identified 182 (out of 485) 
ZIP codes in this study. The evaluation period (12 months) was from Sep. 1, 2006 to 
Aug. 31, 2007 and the rest period was used for training and computation of expected 
values. 

Semi-Synthetic Outbreaks. We injected a set of artificial outbreaks into the 
previously described OTC dataset to generate semi-synthetic experimental data. We 
randomly chose a group of adjacent ZIP codes from the collection of study ZIP codes. 
We used K to represent the size (the number of ZIP codes) of an outbreak and 
arbitrarily determined the outbreak's duration (e.g. 10=T ). The time of outbreak 
onset was randomly chosen as well within the evaluation period. Formula (3) 
computes the increased counts in each ZIP code during the outbreak period. 
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(3) 

where δ  is the slope of the counts injected into the outbreak representing the 
outbreak strength, t  is the number of the days in the outbreak, and 

ic  is the mean 

value of the time series of ZIP code 
iz . The shape of a 10-day outbreak simulation is 

illustrated in Fig. 2.  
In this study, we generated 4 groups of datasets, each of which had different 

outbreak settings, ),( δK , where }3.0,2.0{∈δ  and }8,4{∈K . Each group included 100 

datasets with different outbreaks, and each outbreak lasted for T=10 days. The results 
for the scenarios where the strength of the outbreaks was greater than 0.3 are not 
given in this paper because ZMSC could easily detect such outbreaks on the first day. 

Algorithm Configuration. We compared ZMSC with one advanced time series 
algorithm (WAD) [1, 13] and two spatial-temporal algorithms–KSSS and BSSS.   
WAD has been evaluated in different studies comparing with different time series 
algorithms.  KSSS has been well accepted and applied in public health surveillance 
field and BSSS is a recent innovative spatial-temporal algorithm using Bayesian 
approach.  

 

Fig. 2. An illustration of an artificial outbreak from Day 1 to Day 10 
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For KSSS, we applied the space-time permutation model [14] in SaTScan. We 
configured the analysis as prospective, and the time window as 1-day (time precision 
was on a daily basis), which analyzes only the most current day to make it 
comparable to ZMSC. The number of Monte-Carlo replications was set to be 999. 

For BSSS, we calculated the expected values using a 28-day moving average (as 
described in [3]). The grid was defined as 32 by 32. 

For WAD, we applied wavelet transform to time series to calculate the expected 
value 

ib  for any area 
iz  and signaled an alarm if the value 

iii sbc )( −  went beyond a 

pre-defined threshold on the most recent day T. 
The parameters of the subsets to analyze in ZMSC were configured as %50min =p , 

%95max =p  and %5=∆p . The expected values 
ib  computed by wavelet transform 

were also used in ZMSC. 

Experimental Environment. We ran all of our experiments on a 2GHz Intel CPU 
with 4G of memory. All of the algorithms were implemented in Java 1.5 except for 
KSSS. For KSSS we utilized the implementation in SaTScan which is coded in C. 

Evaluation Metrics. We measured the receiver operating characteristic (ROC) curve, 
the area under the ROC curve (AUROC), the activity monitoring operating 
characteristic (AMOC) curve, the area under the AMOC curve (AUAMOC), 
computation time, cluster sensitivity and cluster positive predictive value (PPV) for 
each algorithm and experimental dataset. 

The AMOC curve represents the relationship between the false alarm rate (FAR) 
and the timeliness of outbreak detection. The FAR is the ratio of falsely detected 
outbreaks to all outbreaks signaled by the algorithm. The unit of timeliness 
measurement in this study was 1 day, assuming each algorithm is executed once a 
day. Both the area under the ROC and the area under the AMOC were ascertained 
using the trapezoidal approximation.  

We defined cluster sensitivity as the percentage of the true outbreak areas over all 
outbreak areas. Each area in our study was the area within a ZIP code boundary. We 
defined cluster positive predictive value (PPV) as the ratio of the number of correctly 
detected outbreak areas in the cluster to the total number of areas in that cluster.  

We defined a true positive as 1) at least one outbreak ZIP code is identified in the 
output cluster, and 2) the cluster is signaled within phase 1 of the outbreak (within the 
first 5 days of the outbreak). 

3   Results 

Fig. 3 shows the ROC curves of the four algorithms (ZMSC, KSSS, BSSS and WAD) 
when run against data for four different types of synthetic outbreaks defined by 
different ),( δK . Table 2 shows the AUROC values for these experiments. ZMSC had 

the best (highest) area under the ROC (AUROC) in all experiments except for the  
group )3.0,8( == δK . Fig. 4 shows the AMOC curves of the four algorithms. Table 2 

shows the area under the AMOC values for these experiments. ZMSC had the best  
(lowest) AUAMOC in two groups of the experiments, ( 2.0,4 == δK ) and 
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( 2.0,8 == δK ). BSSS had the lowest AUAMOC in the remaining two groups of 

experiments, ( 3.0,4 == δK ) and ( 3.0,8 == δK ). We also found that KSSS in 

AMOC’s consistently had a false alarm rate more than 0.2 per day.1  
 
Table 1. Comparison of running time with 95% confidence intervals. Shaded cells show fastest 
algorithm based on 100 experiments.2 

Algorithm ZMSC KSSS BSSS WAD 
Running Time (seconds)3 0.186 

(0.181-0.191) 
933 
(933-933) 

1944 
(1928-1959) 

0.074 
(0.074-0.074) 

 

  
                               (a) )2.0,4( == δK                               (b) )3.0,4( == δK  

  
                               (c) )2.0,8( == δK                                 (d) )3.0,8( == δK

4 

Fig. 3. Comparison of ROC curves 

                                                           
1 To compute the specificity of KSSS, we applied SaTScan to analyze the non-outbreak data on 

each day during a 1-year interval starting from Sep.1, 2006 to Aug. 31, 2007. KSSS output false 
clusters with p-values equal to 0.001 (999 randomization test) at more than 20% of the time. 

2 The running times of KSSS (SaTScan) were quite close and did not differentiate too much 
which resulted in the identical upper control limit (ucl) and lower control limit (lcl) after 
rounding, as well as WAD. 

3 The KSSS method was executed using SaTScan (implemented in C), ZMSC, KSSS and BSSS 
were implemented in JAVA and executed under JRE-1.5. This comparison is meant to 
provide a rough idea of the running time of these algorithms.  

4 In this group of 100 experiments on KSSS, the sensitivity jumped to 0.92 when the specificity 
was lowered to 0.74 (i.e. 1-specificity=0.26) and kept unchanged. 
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Table 1 lists average running time of the three algorithms and the 95% confidence 
intervals. WAD ran the fastest. ZMSC ran 1000+ times faster than KSSS and BSSS. 

Table 3 shows the average cluster sensitivities and PPV's (Positive Predictive 
Values) of the detected clusters. WAD has the highest cluster PPV overall. ZMSC has 
the highest PPV when compared to the other spatial algorithms (KSSS and BSSS). 
KSSS and BSSS had the highest cluster sensitivity values. 

 

 
                         (a) )2.0,4( == δK                                          (b) )3.0,4( == δK  

 
                             (c) )2.0,8( == δK                                    (d) )3.0,8( == δK  

Fig. 4. Comparison of AMOC curves 

Table 2. Comparison of the AUROC and AUAMOC. Shaded cells show the best performing 
algorithms for each group of experiments. 

Algorithm ZMSC KSSS BSSS WAD 
)2.0,4( == δK  0.89 0.72 0.81 0.71 

)3.0,4( == δK  0.95 0.83 0.91 0.90 

)2.0,8( == δK  0.96 0.83 0.94 0.84 
AUROC 

)3.0,8( == δK  0.96 0.80 0.98 0.94 

)2.0,4( == δK  3.11 3.44 3.15 3.65 

)3.0,4( == δK  2.59 2.76 2.49 3.23 

)2.0,8( == δK  2.39 3.05 2.46 3.06 
AUAMOC 

)3.0,8( == δK  2.05 2.31 1.67 2.42 
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Table 3. Comparison of positive predictive values (PPV) and sensitivities of the clusters with 
95% confidence intervals. Shaded cells show the best performing algorithms for each group of 
experiments. 

Cluster PPV Cluster Sensitivity 
Algorithm ZMSC KSSS BSSS WAD ZMSC KSSS BSSS WAD

)2.0,4(K 0.83
(0.78-0.87) 

0.65
(0.65-0.66) 

0.37
(0.30-0.44) 

0.87
(0.78-0.96) 

0.81
(0.77-0.85) 

0.86
(0.86-0.87) 

0.85
(0.80-0.90) 

0.28
(0.25-0.32) 

)3.0,4(K 0.82
(0.77-0.86) 

0.66
(0.65-0.67)

0.45
(0.38-0.51)

0.83
(0.78-0.89)

0.86
(0.82-0.89)

0.89
(0.88-0.89) 

0.88
(0.83-0.92)

0.36
(0.32-0.39)

)2.0,8(K 0.81
(0.77-0.85)

0.72
(0.71-0.72)

0.43
(0.38-0.48)

0.90
(0.85-0.94)

0.62
(0.57-0.67)

0.80
(0.80-0.80)

0.81
(0.76-0.85)

0.17
(0.15-0.19)

)3.0,8(K 0.220.66 0.45 0.87 0.68 0.74 0.830.83
(0.79-0.88) (0.65-0.67) (0.40-0.50) (0.81-0.92) (0.64-0.73) (0.74-0.75) (0.79-0.86) (0.19-0.25)

 

4   Discussion 

In this study, WAD, a temporal algorithm, had the fastest running time and highest 
cluster PPV’s among the four algorithms. The time complexity of wavelet pyramid 
algorithm is O(n) which makes it the fastest algorithm within the four algorithms. 
Since it pinpoints the areas who have the highest elevated standard deviations, these 
areas were very likely to be the outbreak areas in the experiments (i.e. high cluster 
PPV’s). However, the pinpointed areas by WAD were scattering because of the lack 
of spatial knowledge and the presence of noisy data, which leads WAD to the lowest 
cluster sensitivity compared to the other three algorithms which is not acceptable in 
practice for cluster detection. Hence, we pay more attention to the comparison among 
the three spatial detection algorithms in the following discussion. We found that 
ZMSC has several advantages—ZMSC is faster, more precise and able to detect 
arbitrarily shaped clusters. 

First, ZMSC runs much faster than KSSS and BSSS due to its decreased 
computation complexity. Given the adjacency relationship between any two areas, the 
time complexity of the ZMSC algorithm is O(n2), where n is the number of ZIP codes 
in the analysis. ZMSC is more efficient than KSSS [2] which has a complexity of 
O(n3). ZMSC is also more efficient than BSSS [3] which has a complexity of O(m4), 
where m is the length of the grid.  

Second, ZMSC tended to identify a cluster with much higher precision compared 
to the other algorithms. BSSS and KSSS had low PPV's, which indicates that their 
output clusters were either much larger than the sizes of true outbreaks or involved 
more non-outbreak areas than those of ZMSC. One of the reasons was that the shape-
restricted search window (the cluster must be circular, ellipse or rectangular) involved 
more innocent areas. Another reason could be the inappropriate parameter setting of 
search, for example, 32 by 32 grid in BSSS for analyzing the state of Pennsylvania is 
not precise enough (but a denser grid setting makes it computational inefficient). 
ZMSC had the highest cluster PPV values while its sensitivity ranked third, which 
means that ZMSC would provide more focused areas for us to investigate further 
without eliminating too many outbreak areas. 
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Finally, ZMSC, unlike KSSS and BSSS, is not limited by the shape of a cluster. 
When ZMSC is used with ZIP code boundaries the cluster identified often has an 
irregular shape due to the union of the exact geographical shapes of the areas inside 
the output cluster. This approach is more informational than the others, which 
constrain the cluster shape into artificial shapes, such as circle, ellipse, or rectangle. 

With regard to the area under the AMOC curves, the performance of ZMSC is 
comparable to the other three algorithms. However, ZMSC could not beat BSSS when 
the false alarm rate was low. Since the timeliness at low false alarm rates is more 
substantive in practice, this indicates BSSS had the best timeliness.  

One limitation of this experiment is although most epidemic dispersions are more 
likely to propagate from starting areas to nearby (contiguous) areas, the ZMSC 
algorithm in this study was restricted to detecting outbreaks which were happening in 
the connected ZIP code areas only (adjacency threshold η  was set to 0). For example, 

a cluster of outbreak areas separated by landforms such as rivers and mountains 
would probably be considered as several isolated smaller clusters by ZMSC. Such a 
limitation can be corrected by adjusting the adjacency threshold or taking landforms 
into account. 

Also, as the injected outbreak was artificial in this study, it could not mimic 
perfectly real outbreaks. We plan to apply more challenging outbreak data in the 
future work. 
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Abstract. Epidemic thresholds were deduced and simulated from SIR models 
of Susceptible – Infected – Recovered individuals, through local stability 
analysis of the disease free and endemic equilibrium, with an algorithmic 
method. One and two types of infected individuals were modeled, considering 
the influence of sub clinical, undiagnosed or unrecognized infected cases in 
disease transmission. 

Keywords: Mathematical model, basic reproduction number. 

1   Introduction 

Recently, Brown et al. [1], proposed an algorithm for symbolic deduction of the basic 
reproductive rate through a local analysis of the disease-free state and endemic 
equilibrium. 

The basic reproductive rate (R0) is a critical magnitude or epidemic threshold that 
helps to understand the dynamics of emerging and re emerging disease transmission, 
identify measures to prevent and control epidemics and establish criteria for 
elimination / eradication of diseases. [2] 

R0 measures the average number of secondary cases generated by a primary case 
during its period of infectivity, when the case is introduced into a partially susceptible 
population. [3],[4] 

When R0 is the critical parameter deducted from a SIR model with homogeneous 
mixing between susceptible and infectious individuals, R0 is a ratio between the 
infection rate of susceptible individuals and the recovered rate of infected individuals 
and multiplied by the susceptible size of population. [4] 

Epidemic threshold is established according to R0: If R0 > 1, there will be 
instability of disease and outbreaks will occur because susceptible individuals 
accumulate long enough to start the outbreak or the infection rate is higher than the 
recovered rate. If R0 <1 , there will be stability of disease, outbreak will be minor or 
will not occur at all because there are less susceptible individuals or there is a lower 
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infection rate than the recovered rate by increasing of immunization, quarantine or 
mortality. [1] 

A disease-free equilibrium is one in which all dependent variables corresponding 
to the presence of the disease in the population are zero. This equilibrium is 
asymptotically stable,  if after a long period of time a state involving a small number 
of infected individuals will converge back to this disease-free equilibrium i.e., R0 <1.  
It will be unstable, if secondary cases of the disease are generated i.e., R0 > 1. [1] 

Brown et al., analyzed the epidemic threshold in the following models in 
differential equations: the SEIRS model (susceptible,  exposed –not yet infected-, 
infected,  recovered –currently immuned-;  the SEIT model adding a group T of 
individuals under treatment for the disease,  the  MSEIRS model whose newborn 
children of mothers (M) who are immune to a specific disease are passively protected 
by maternal antibodies for a certain time and the SIS model (susceptible,  infected and 
vaccinated). [1]  

These authors discussed the desirability of symbolic computation to analyze the 
properties of the parameters and influence of these in the epidemic threshold with an 
algorithmic approach that avoids tedious work by hand. [1] 

This work continues Brown’s algorithm by comparing the epidemic threshold in 
the SIR model with a single infected state and the SIIR model with two infected 
states. In both cases, the influence of immunization rate and loss of immunity rate are 
analyzed. 

Modeling two infected states is important to understand the dynamics of transmission 
of sub clinical infections or asymptomatic cases, unrecognized or undiagnosed cases and 
diseases with different levels of severity. This is especially important when 
“undiagnosed” infected individuals may influence the transmission of infection, either by 
threatening the reemergence of the disease or limiting its elimination, such as influenza, 
SARS, polio, rubella, some sexually transmitted diseases, among others.  [5], [6], [7] 

2   Methods 

An epidemic model is defined by a system of differential equations which describes the 
evolution of the number of individuals in each state of the epidemic process. [2], [8].   

The SIR model reflects transitions from susceptible state to infected state when 
individuals have effective contact, according to the infection rate (β). Similarly, 
infected individuals are transferred to recovery state according to the recovery rate (γ), 
through isolation and recovery of infected individuals or through immunization of 
susceptible individuals [8].    

In the SIIR model, susceptible individuals may be transferred to infected state 
number 1 (clinical, diagnosed, and recognized) or to the infected state number 2 (sub 
clinical, undiagnosed, and unrecognized), according to the infection rate β1 and β2, 
respectively.  Similarly, infected individuals in each state are transferred to recovery 
state at the recovery rate γ1 and γ2.  Immunization of susceptible individuals (p) and 
loss of immunity of recovered individuals (q) are analyzed in both models. 
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Throughout this paper we assume that birth and death rates (µ) are equal keeping a 
constant host population size, the population is homogeneously mixed and 
transmission is according to the mass-action principle. [8] 

Epidemic thresholds are deducted through an analysis of local stability with a 
semiautomatic algorithm. [1] The algorithm is implemented in Maple 11 (Maplesoft 
Inc, Ontario Canada) and simulations are executed showing epidemic thresholds when 
there are changes of critical population size (N=10, N=100, N=1000).  Packages for 
Groebner basis and Polynomial Ideals are exploited using as a background the power 
packages “LinearAlgebra” and “LargeExpressions”.  

2.1   The SIR Model 

The system of equations describing the change in time of susceptible X(t), infected 
Y(t),  and recovered Z(t) individuals,  without immunization and loss of immunity 
rate, is: 

 = 
d
d
t

( )X t  −  − µ N β ( )X t ( )Y t µ ( )X t
 

(1) 

 = 
d
d
t

( )Y t  −  − β ( )X t ( )Y t γ ( )Y t µ ( )Y t
 

(2) 

 = 
d
d
t

( )Z t  − γ ( )Y t µ ( )Z t
 

(3) 

2.2   The SIR Model with Immunization and Loss of Immunity 

The differential equations are: 

 = 
d
d
t

( )X t  −  −  +  − µ N β ( )X t ( )Y t p ( )X t q ( )Z t µ ( )X t
 

(4) 

 = 
d
d
t

( )Y t  −  − β ( )X t ( )Y t γ ( )Y t µ ( )Y t
 

(5) 

 = 
d
d
t

( )Z t  +  −  − γ ( )Y t p ( )X t q ( )Z t µ ( )Z t
 

(6) 

2.3   The SIIR Model 

This model describes the epidemics with four states: Susceptible individuals X(t), 
Infected individuals of type 1- Y1(t) (clinical,  diagnosed, recognized), Infected 
individuals of type 2 – Y2(t)  (sub clinical, undiagnosed, unrecognized) and 
Recovered individuals Z(t).  Immunization and loss of immunity rates are not 
included in this model. 
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2.4   The SIIR Model with Immunization and Loss of Immunity 

The corresponding system of equations is now:  
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3   Results 

3.1   Analysis of Local Stability  

The points of diseases-free and endemic equilibrium of each model are presented in 
Table 1. The SIR models have a unique epidemic threshold with the presence of a 
single point of disease -free and endemic equilibrium, regardless of the presence of 
immunization and loss of immunity rates. 

The SIIR models have both disease-free equilibrium states as endemic equilibrium 
states. This model exhibits two critical magnitudes corresponding to the basic 
reproductive rate of two sub-populations of infected individuals considered separately.  

Details of the algorithm implementation are presented only to the SIIR model with 
immunization and loss of immunity rates. 

Theorem 1. The system (11)-(14) admits the following equilibrium points:   
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Table 1. Disease free and endemic equilibrium points and thresholds by SIR and SIIR model, 
with or without immuization rate (p) and loss of immunity rate (q) 

Model Disease free- equilibrium Thresholds
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Table 1. (continued) 
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Proof: 
Equations of equilibrium 
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Resolving (15)-(18) was obtained a), b) y c) 

Theorem 2. In the system (11)-(14), the disease – free equilibrium point is locally 
stable if and only if, R0,1<1 and R 0,2<1,  where 
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Proof: 
The Jacobian of the system (11)-(14) evaluated at the disease – free equilibrium point 
is: 



 Epidemic Thresholds in SIR and SIIR Models Applying an Algorithmic Method 125 

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

−  − µ p −
β

1
( ) + µ q N

 +  + µ q p
−

β
2

( )+ µ q N

 +  + µ q p
q

0  −  − 
β

1
( ) + µ q N

 +  + µ q p
γ

1
µ 0 0

0 0  −  − 
β

2
( ) + µ q N

 +  + µ q p
γ

2
µ 0

p γ
1

γ
2

−  − µ q , 

and the corresponding stability conditions are 
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These two stability conditions can be rewritten respectively as R0,1 < 1 and R0,2 < 1, 
where 
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Theorem 3. In the system (11)-(14), the first point of the endemic equilibrium is 
locally stable when it exists, that is, when R0,2>1, where 
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Proof: 
The Jacobian for the first endemic equilibrium point is: 
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and the corresponding stability condition  is:  R0,2 >1; where 
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Finally, given that  
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The condition of existence of the first endemic state is R0,2>1. 
 
Theorem 4. In the system (11)-(14), the second point of the endemic equilibrium is 
locally stable when it exists, that is, when R0,1>1, where 
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Proof: In analogy with the demonstration of Theorem 3. 

3.2   Numerical Simulations 

The Table 2 shows numerical simulation of epidemic thresholds and mathematical 
expresions for y1(t) clinical and y2(t) subclinical cases,  with different critical 
population sizes and according to Theorem 2.  Parameter values correspond to data 
from rubella (infection rate ∼ incidence rate) in Latin America and the Caribbean in 
1998, a few years after the start of mass vaccination against rubella. It is assumed a 
relationship 2:1 of clinical to subclinic infection, because 30-40% of rubella cases are 
subclinical.[9] 

In the first simulation, R0,1 < 1 and R0,2 < ,  there is not epidemic outbreak. The 
Figure 1 a) shows the corresponding epidemic curves and the typical behaviour of 
stability are observed:  the number of infected individuals is decreased to zero and 
finally only susceptible and recovered individuals remain; which means there is not 
an outbreak. 

The Table 2 shows the second numerical simulation corresponding with the case 
when R0,1 < 1 and R0,2 > 1.  We observe explicitly that y1(t) decays exponentially but 
y2(t) grows exponentially, which is a symptom of instability, and in this case there is 
partially developed outbreak.  The Figure 1b) shows the corresponding epidemic 
curves and the typical behaviour of instability:  the number of susceptible individuals 
is decreased to zero and the number of infected people grows exponentially, which 
means there is a partially developed outbreak. 

Table 2. Simulations of epidemic thresholds and prevalence of clinical and subclinical cases 
according to the critical population size 

Simulation Critical 
population size 

N 

R 0,1 
(clinical 
cases) 

R 0,2 
(sub 

clinical 
cases) 

y1(t) 
Prevalence of 
clinical cases 

y2(t) 
Prevalence of 
sub clinical 

cases 
1 10 0,019 0,112 y1(t)=e(-0,11*t) y2(t)=2*e(-0,008*t) 
2 100 0,195 1,123 y1(t)=e(-0,09*t) y2(t)=2*e(-0,001*t) 
3 1000 1,955 11,143 y1(t)=e(0,11*t) y2(t)=2*e(0,10*t) 
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(b) 

Fig. 1. Simulations of susceptible individulas (x(t)),  clinical infected individuals (y1(t)), 
subclinical infected individuals (y2(t)), and removed individuals (z(t)) by time, according to the 
critical population size: a) N=10, b) N=100, c) N=1000. Parameter values: Clinical infection 
rate (β1)= 0,00025; subclinical infection rate (β2)=0,00012; natality/mortality rate (µ)=0,00002; 
loss of immunity rate (q)=0,003;  immunization rate (p)=0,0002; recovery rate of clinical cases 
(γ1)=0,12; recovery rate of sub clinical cases (γ2)=0,01. 
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(c) 

Fig. 1. (continued) 

 
Finally, the Table 2 shows the third numerical simulation corresponding with the 

case when R0,1 > 1 and R0,2 > 1.We observe explicitly that both y1(t) and y2(t) grow 
exponentially with the time, which is a sign of instability, and in this case there is a 
fully developed outbreak. The Figure 1b) shows the corresponding epidemic curves 
and the typical behaviour of instability:  the number of susceptible individuals is 
decreased to zero and the number of infected people grows exponentially, which 
means there is a fully developed outbreak. 

4   Discussion  

The Table 1 shows that the simple SIR model only has one critical parameter, R0. In 
contrast, according with Theorem 2, the SIIR model has two critical parameters, 
namely R0,1 and R0,2. It is a consequence of the introduction of two type of infected 
states: clinical and sub-clinical individuals.  More over, the stability condition for the 
simple SIR model is merely R0 < 1; but the stability condition for the SIIR model is 
more stringent because the Theorem 2 demands R0,1 < 1 and R0,2 < 1.  The endemic 
states are more difficult to compute than the disease-free states. In general, 
computation of the endemic states demands the application of tools in computational 
commutative algebra and algebraic geometry. [10] 

The epidemiology of sub clinical infections is largely unknown because there is not 
a reliable method to diagnose such infections, and follow-up studies about loss of 
immunity rate are scarce.  However, from a theoretical point of view, studies about 
the effect of these sub clinical infections on the levels of infection,  and the effect of 
waning and boosting of immunity on levels of infection in individuals with low (but 
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detectable) levels of immunity, who have experienced mild or sub clinical infections 
on contact with the virus, have been analyzed.  [11], [12], [13].   

The usefulness of this model is the theoretical illustration of two thresholds when 
considering clinical and sub clinical cases, although there are no real values of 
parameters for simulating the behavior of the disease with sub clinical infection. 
Simulation with rubella incidence in Latin America and the Caribbean in 1998 reflect 
the pattern of disease occurrence, although there are no data on infection rate for sub 
clinical infection over time. [9] 

The algebraic expressions of the basic reproductive rate of the SIIR model give a 
synthesis of all epidemic parameters in the model and for this reason it is possible to 
appreciate the modifications of the basic reproductive rate when one or several  
epidemic parameters are altered, including cases when  numerical values of such 
parameters are unknown and hard to obtain. It permits to derive control measures 
tending to reduce the basic reproductive rate, such as quarantine, surveillance, 
vaccination, education, sanitation, and so on.  

This study describes the dynamics of the disease with two types of infected 
individuals but does not compare intervention strategies which could be useful 
especially when stochastic approaches of transmission in communities of households 
are considered. [6] However, it is observed that an epidemic with two type of infected 
people, according to a SIIR model, is more difficult to control than an epidemic ruled 
by the simple SIR model with only clinical infected individuals.  Intensive contact 
tracing, syndromic surveillance and innovations in case detection could be required, 
when sub clinical and clinical infected individuals are considered. [4,6,13,14] 
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Abstract. Syndromic surveillance can be used to assess change in drug
abuse rates and to find regions in which abuse is most common. This
paper compares the power of three syndromic surveillance procedures
(a paired-sample test, a process control chart, and a conditional autore-
gressive model) for detecting change in opioid drug abuse patterns, using
data from two reporting systems (the OTP and PCC datasets). We find
that the conditional autoregressive model provides good power and geo-
graphic information and that the OTP data carry the strongest signal.

1 Introduction

The substantial rise in nonmedical use and abuse of prescription opioid analgesics
over the past decade offers an important opportunity for comparing syndromic
surveillance methods [4]. Prescription drug abuse has similarities to infectious
disease due to the inherent geographical effects [3], multiple reporting systems
which vary in coverage and data quality, and it is a major concern in public health
management. Prescription opioid analgesic abuse cost the U.S. an estimated
$8.6 billion in 2001 due to increased health care, workplace, and criminal justice
costs [1].

This paper contrasts three different strategies for syndromic surveillance:

– A paired-difference two-sample test, which looks for differences in abuse rates
over time at each reporting site.

– A sequential process control procedure, using the CUSUM chart, similar to
that used by the CDC [9].

– A conditional autoregressive (CAR) model which incorporates covariates as
well as a model for geographic dependence.

These methods are compared with respect to their power in detecting simulated
signal using historical abuse data and in their ability to detect hot spots of this
abuse.

The data sets used in this study operate under the auspices of the Researched
Abuse, Diversion, and Addiction-Related Surveillance (RADARS R©) system:

– OTP. The Opioid Treatment Programs study collects quarterly question-
naires from abusers enrolled in Methadone Maintenance Treatment Programs
(MMTPs) and thus captures a key population of sophisticated abusers.

D. Zeng et al. (Eds.): BioSecure 2008, LNCS 5354, pp. 131–142, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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– PCC. The Poison Control Center network records information on help calls
resulting from intentional drug exposures; not all poison control centers par-
ticipate, but its coverage is about 70% of the U.S. by population.

Besides these databases we also considered: the National Survey on Drug Use
and Health (NSDUH), an annual federal survey; Monitoring the Future (MTF),
a nationally representative cohort study of self-reported drug use by 8th, 10th,
and 12th grade students, who are then followed in biennial surveys until age
29; and the Drug Abuse Warning Network (DAWN), which provides an annual
cross-sectional sample of Emergency Department visits related to nonmedical
use of drugs. Although NSDUH and MTF survey 70,000 and 50,000 respondents
respectively, the percentage of these individuals abusing opioids is small. There-
fore their effective sample sizes for detecting change in a syndromic surveillance
program would be inadequate. The effective sample size in DAWN is larger, but
DAWN studies only a few major metropolitan areas in the country and therefore
spatial information is limited.

We focused on one specific medication, the opioid analgesic OxyContin R©
(oxycodone HCI, controlled-release) Tablets, since it has been the target of abuse
over several years [2]. We focus on change detection for a one-sided alternative
which specifies that the drug abuse rate has decreased over time. This approach
is simpler than two-sided alternatives, reflects federal interest in measuring the
effectiveness of drug prevention programs, and our results extend directly to the
symmetric hypothesis that drug abuse has increased.

All power studies were performed by simulation. For each combination of
database and analysis, we examined power as a function of simulated levels of
abuse reduction. The simulations were performed by bootstrapping [5] from the
original data sets, after adjustment to achieve specified reduction levels.

Our goals are to determine the tradeoffs among the three analyses, in terms of
power, geographic localization, and operational requirements (computing time,
statistical complexity). We also want to determine the tradeoffs among the two
databases used in this study. Section 2 describes the methodology; Section 3
presents the results; and Section 4 summarizes the comparisons.

2 Methodology

The methods developed in this paper follow this protocol: 1) a generative model
is assumed for the data, 2) simulations with artificial signal are generated from
this model, and 3) multiple surveillance techniques are applied to the resulting
data. In the OTP data, the generative model is a CAR model including covari-
ates. In the PCC data, the generative model is a log-linear model. In both data
sets, the surveillance techniques used include a two-sample test and a process
control chart. We also use the CAR and the log-linear model for surveillance
in the OTP and PCC data sets, respectively, but the models include a term to
detect the difference in abuse between time points.
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2.1 Statistical Tests

Many statistical approaches to syndromic surveillance could be considered: re-
peated measures MANOVA, longitudinal analysis, time series analysis, various
regression models, process control charts, two-sample tests, and so forth. In
picking the three methods used in this paper, we sought transparency as well as
adequate statistical power.

Two-Sample Tests. These tests look for a change between two time points.
We use the classic one-sided test for a difference in binomial proportions. The
test statistic is:

z = (p̂1 − p̂2)/

√
p̂1(1 − p̂1)

n1
+

p̂2(1 − p̂2)
n2

where p̂1 is the observed proportion of abusers in the previous quarter and p̂2 is
the observed proportion in the current quarter. This test statistic is referred to
a standard normal table.

The two-sample test can be improved when the same sites report each quarter.
If there are k such sites, one can perform the two-sample test separately at
each, and pool the resulting P-values according to Fisher’s rule [6]. Let pi, for
i = 1, . . . , k, be the P-value for site i; then

χ2
2k = −2

k∑
i=1

ln pi

which can be referred to a chi-squared table. Thus many slightly significant
reductions can be pooled to give stronger evidence of a reduction. Repeated use
requires adjustment for multiple testing. To give an indication of geographical
variability in the reductions, one can map the P-values by region.

Process Control Charts. Control charts check whether a succession of ob-
servations has drifted away from a baseline value. A CUSUM chart plots the
sum of the differences between the previous quarters’ proportions and a baseline
proportion. As described in [8], when this sum falls below a lower control line,
the result is statistically significant. The CUSUM procedure is more complex
than the two-sample test or the Shewhart control chart, but still fairly simple.

Control charts assume that the baseline is fixed and known. This is reasonable
in manufacturing, but in syndromic surveillance, we do not know the baseline
abuse rate; we can only estimate this, with uncertainty, from historical data.
The assumption of no trend in this historical data is critical.

CAR Models. The previous tests make no use of covariate information. If
covariates are influential, then a regression model should have more power and
greater ability to notice specific regions with unusual behavior.

We use the Generalized Linear Model (GLM) in conjunction with the Condi-
tional Autoregressive (CAR) model. Our GLM uses the logit function (log odds)
to linearize the dependence of a proportion upon covariates [7].
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CAR models include spatial or temporal dependence through a neighborhood
structure, so that reporting units that are near each other have correlated data.
This is reasonable in syndromic surveillance. In our application, there are known
hot spots of opioid drug abuse in Appalachia and Maine. For this analysis, we
aggregated the geographic information to the state level. The methodology could
be extended to other spatial resolutions, but we found this aggregation to be
effective for our purposes

Inference is done through Markov chain Monte Carlo [10], but in a problem
of this scale there are computational challenges. Sometimes it took a full day of
computing to provide a single point in the power curve.

2.2 Simulation Procedures

All of the power curve figures in Section 3 were produced by simulation. These
simulations were produced using either the model in (1) or (2) where the mean
was multiplied by the appropriate fraction to produce, on average, a linear
decline in abuse over three years. The parameters used in these simulations
were drawn from the posterior distributions for the parameters using only the
pre-intervention data. We focus on power for two significance levels: α = .05 and
α = .052 = .0025 that bracket loose and stringent levels for Type I error. Each
plotted point is based upon 200 simulations with a specific, simulated decrease
in abuse from the previous historical record in each of the databases.

The process control chart simulations assume that, after the last historical
quarter, the abuse rate in subsequent quarters drops linearly over three years to
a new level that was 5%, 10%, 15% or 20% lower. Extensive pre-simulation runs
were made to estimate the lower control line values for these charts.

3 Results of the Power Analyses

The following subsections describe the power curves. There is a short review of
each dataset and special analytic issues that they pose.

3.1 OTP

The OTP data derive from questionnaires administered to abusers enrolled in
selected Methadone Maintenance Treatment Programs (MMTPs). It captures
information on opioid abuse in the past 30 days, the primary drug, and geo-
graphic/demographic information. The data are quarterly in 2005.

OTP Two-Sample Test. Figure 1 shows the estimated power of the two-
sample test using OTP data with Fisher’s test for change at MMTP clinics
that appear in both time periods. This “blocking” of an MMTP with itself
automatically controls for many biases and reduces the variance in comparisons.
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Fig. 1. Power curves for a two-sample OTP test. The most recent four quarters are
combined to give the pre-sample abuse level.

OTP Control Chart. For control charts, one cannot plot power for all possible
values of reduction (percentage decrease). So Figure 2 plots the probability of
rejection for four different reduction levels: 20%, 15%, 10% and 5%, reading the
curves from left to right.

Interpreting Figure 2 requires some care. Note that the two-sample tests use a
year’s worth of data, whereas the quarterly data has necessarily smaller sample
size. Looking at the power in the fourth quarter gives a basis for comparison,
but recall that control charts do not adjust for multiple testing.

OTP CAR Model. OTP data capture age, gender, race, and location. This
enables use of a CAR model that incorporates spatial correlation structure.

The CAR model used in this power study is:

Yik(t) ∼ Bernoulli(pik(t))
logit(pik(t)) = β0 + β1xi1 + β2xi2 + β3xi3 + bk (1)

where Yik(t) is the outcome for individual i living in state k (i.e., it is 1 if the
individual has used an oxycodone product in the past 30 days and 0 otherwise).
The covariates describe gender, race, and age, respectively, where race has been
dichotomized to white or non-white and age has been broken down into 17
age categories. Flat priors were used for all coefficient parameters. The spatial
random effect for U.S. state are assumed to have a CAR prior distribution
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π(b1, . . . , bK) ∝ exp

⎛
⎝−τ

2

∑
i�=j

wij(bi − bj)2

⎞
⎠

where τ is the precision parameter, given a Gamma(1,1) prior, and wij is ob-
tained from the matrix of binary weights that indicate whether two states share
a border. We examined the use of a quadratic term in age, but it was not sig-
nificant and thus excluded from this model.

Table 1 shows the posterior credible regions (Bayesian confidence intervals)
on the coefficients for gender, race, and age. The estimated value for the gender
coefficient is .46 and its credible region excludes 0, so men are more likely to
abuse opioid drugs. Similarly, the coefficient of 1.15 on race means that whites
are more likely to abuse opioids. The age coefficient is negative, so the elderly
are less likely to abuse.

The location terms bk are random effects, and correlated. Since data are ag-
gregated by state, the correlation structure is coarse: two states directly interact
if they are contiguous; otherwise, states are conditionally independent given
their neighbors. (Alaska is the only reporting state that had no neighbors.) The
model for the correlation is multivariate Gaussian with unknown but common
correlation for states that share boundaries.
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Fig. 2. Power curves for CUSUM testing with OTP data. The solid (broken) lines
correspond to .05 (.0025) level tests. The lines, reading from the bottom up, correspond
to 5%, 10%, 15% and 20% reductions in abuse rate, pro-rated over three years.
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Table 1. Percentile points of the posterior distributions on the fixed-effect terms in
the CAR model

2.5% 50% 97.5%

Intercept -2.2 -1.7 -1.2

Gender 0.31 0.46 0.58

Race 0.89 1.15 1.47

Age -0.051 -0.043 -0.034

CAR precision 0.19 0.36 0.64
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Fig. 3. A display, by state, of the 95% credible regions on the location (or state) effect.
If the range of the line for a state straddles zero on the y-axis, then there is more than a
5% chance that that state has no effect on the abuse rate, after accounting for gender,
race and age. The central boxes contain the middle 50% of the probability mass for
the magnitude of the state effect, and the midline within the box is the point estimate
of the magnitude of the state effect.

Figure 3 shows estimates of the state effects in the CAR model. Three states
with large positive effects were Tennessee, West Virginia, and Virginia. This
accords with previous reports of high opioid abuse rates in Appalachia. Some
states, such as California and Connecticut, have lower than expected rates of
opioid abuse. The wide interval for Louisiana surely reflects uncertainty in the
data due to Hurricane Katrina.
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Fig. 4. Power curves for a CAR model test of abuse reduction using OTP data. The
solid line is for an alpha level of .05; the dashed line is for an alpha level of .0025.

To test for a drop in abuse rate, the CAR model in equation (1) is modified
to include a term for time. If the time coefficient is significantly less than zero,
this indicates one-sided change (reduction). The magnitude of the effect can be
estimated from the coefficient.

The CAR model was fit using Gibbs sampling run through WinBugs with an
R interface. The OTP data takes a relatively long time to run (about 10 minutes
per simulation run) so the power is only calculated for reductions of 1%, 2%,
4%, 5%, 6%, 7%, 8%, 9%, 10%, and 12%, as shown in Figure 4.

3.2 PCC

The PCC network data consists of calls to regional poison control centers (usually
funneled through 911 calls) regarding intentional exposure to drugs. The network
covers approximately 70% of the U.S. population. The geographic counts are
aggregated at the 3-digit zip code (3DZ) level. The data are highly reliable
in terms of the identification of specific drugs, since PCC operators usually
obtain the NDC code from the pharmacy label, but demographic data are not
consistently captured.

The main explanatory variable in the PCC data is the 3DZ location. We use
this to leverage information on the estimated population and the number of
unique recipients of dispensed drugs (URDDs) in the region. The fitted model
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Fig. 5. The solid (broken) line is the probability of rejecting the null hypothesis of no
reduction in opioid abuse at the .05 (.0025) level using PCC data with a two-sample
test when, in fact, the reduction is as shown on the x-axis
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Fig. 6. The power curve for a CUSUM test with PCC data. The solid (broken) lines
correspond to .05 (.0025) level tests. The lines, reading from the bottom up, correspond
to 5%, 10%, 15% and 20% reductions in abuse rate, pro-rated over three years.
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Fig. 7. The solid (broken) line is the probability of rejecting the null hypothesis of no
reduction in opioid abuse at the .05 (.0025) level using PCC data and the GLM test
when, in fact, the reduction is as shown on the x-axis

assumes the observed count Yi of specific opioid PCC calls in the ith 3DZ has
Poisson distribution with parameter λi given by:

ln(λi) = α ln(URDDi) + β ln(Popi) (2)

The population size and URDD provide rough “denominators” for the group at
risk for opioid abuse.

PCC Two-Sample Test. After fitting, we used equation (2) to simulate ob-
servations for future quarters by drawing counts from Poisson distributions with
decremented values for the estimated λi such that, on average, the number of
simulated abuses decreased to a specified amount linearly over three years. The
test statistic for deciding whether there has been a change is:

tn−1 = ∆̄/
√

s2
∆/(n − 1)

where n is the number of 3DZs and ∆̄ is the average regional difference in the
count at the historical baseline of surveillance and the count afterwards. The s2

∆

is the sample variance of the observed differences.
In calculating power, we used only the 571 3DZs that reported in all quarters

of 2005. Figure 5 shows the result.
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PCC Control Chart. Using the simulation procedure described previously
and thus taking advantage of information on URDD and population size, we
generated data for the CUSUM test in Figure 6. The mean of the initial year
was the baseline against which deviations should be discovered.

PCC Regression Model. We fit a GLM model using URDD and population
size as covariates, with the addition of a term for time (as we did with the CAR
model for OTP). The effort needed to map the 3DZs to a state-level adjacency
matrix prevented a full CAR analysis, although this could be done. Figure 7
gives power curves for tests at the .05 and .0025 levels.

4 Conclusions

Disease surveillance seeks to identify a sudden increase in the prevalence of
an illness against a background of relatively low rates. But drug abuse usually
has a higher background prevalence which does not increase drastically. So drug
abuse surveillance focuses on finding decreases in abuse that document successful
intervention investments. This paper has compared methods and datasets that
support that objective.

For OTP data, on a three-year horizon, the CUSUM is more powerful than
the CAR test, which is more powerful than the two-sample test. But the CUSUM
does not adjust for multiple testing, so its apparent power is misleading. Also,
the three-year time frame gives it a larger effective sample size than the CAR
or two-sample tests. For the PCC data, the same conclusions and caveats apply.
The regression test is better than the two-sample test, but both lose to the
CUSUM, which enjoys unfair advantages. (The CUSUM makes 12 tests, one
for each quarter, all at a .05 level. So the overall probability of Type I error is
actually 1 − (1 − .05)12 = .46.)

In comparing the two data sets, OTP has a larger effective sample size than
the PCC, so procedures that use OTP will generally be more powerful. Addi-
tionally, in this analysis, the regional information was more accessible and could
be meaningfully interpreted for the OTP data.

People who contact a Poison Control Center are probably less sophisticated
abusers than OTP clients. This may make them of greater (or less) public health
interest. Data quality is also a issue. PCC data usually include the NDC code, but
OTP data are self-reports from addicts based on recall. Other datasets (NSDUH,
MTF, and DAWN) have similar data quality concerns.
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Abstract. To demonstrate an approach that allows for the assessment of 
models and their accuracy, a numerical experiment was designed to generate 
a “control” data set and treated it as if it were “real” data. The open source 
spatiotemporal epidemiological modeler (STEM) was used to develop a 
control scenario depicting the spread of influenza in the state of Vermont; this 
scenario was then compared to three alternative models using such tools as 
root mean square differences and phase space analysis. This approach may 
prove helpful in responding to global pandemics and arriving at necessary 
policy decisions.   

Keywords: Spatiotemporal data analysis, Infectious disease spread, 
Epidemiological models, Assessment, Validation. 

1   Introduction 

Any model of infectious disease is built on layers of assumptions and knowledge that 
define the underlying interactions between the infectious organism and the host 
species, and among members of the host community. At the highest level, the 
dynamics of disease spread in a human population depend on properties specific to 
the disease organism, such as its incubation, transmission, and mortality rate [1-3]. At 
the lowest level, independent of the disease organism, are the vectors that regulate the 
spread of the disease, such as the motion of people (traffic flow), the locations of 
waterways, even local rainfall (which in turn regulates mosquito populations) [1-3].  

All of these interactions, disease specific and nonspecific, may be described as 
component models existing on a “graph” [4-6]. A graph is composed of nodes and 
edges connecting the nodes. Both the nodes and edges can have multiple labels 
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defining properties. On a node, a label might represent rainfall at some location; on an 
edge, a label might represent the flow of people (or birds) between two locations. 
Labels and edges can also contain decorators that are like labels with built in 
algorithms to predict how properties might change with time. This is the abstraction 
used in the Spatiotemporal Epidemiological Modeler (STEM) [6], an open source 
framework for modeling infectious disease available through the Eclipse Foundation 
as part of its Open Health Framework [7].  

1.1   Approaches to Assessment 

Modeling such interactions as a graph allows models of infectious disease to be 
composed using layers of interchangeable and reusable parts [6]. The software 
architecture provided by STEM will allow scientists, across disciplines, to develop 
libraries of components to facilitate very rapid prototyping of new models in response 
to emerging infectious disease. These new capabilities bring with them the need for 
an approach to assess the relative accuracy of alternative models, and the loss in 
accuracy over time [8-10]. 

Infectious disease spread through a population is a stochastic dynamic process [9-
12]. As in weather forecasting, any model of a “dynamical system” will lose accuracy 
at a rate dependant both on the uncertainty in the input data (knowledge of the disease 
state in the real population) and on the dynamics of the disease itself [9-12]. Some 
models, of course, do better than others. How does one assess accuracy of a model? 
Developing a “good model” depends not only on correct tuning of the model 
parameters (transmission rates, incubation rates, etc.), but also on choosing a model 
that correctly captures the most essential vectors of transmission. With modern 
computers it is tempting to build models that include as many conceivable 
interactions as possible. However, such models may be over-determined in that they 
introduce too many tuning parameters relative to the number of degrees of freedom in 
the input data set.  

2   Developing a Control Scenario  

The study of dynamical systems has yielded a variety of tools and formalisms that 
help scientists assess the accuracy of models. In this paper we present a control 
scenario built to test such an assessment. Using STEM, we generate a “control” data 
set for human influenza that we can treat as if it were “real” data. Our purpose is not 
to put forth the control data as a representation of any new disease, but rather to 
demonstrate an approach that allows for the assessment of models and their 
accuracy.    

For the control scenario, we use the spread of human influenza within the state of 
Vermont. We chose influenza because it is a well studied infectious organism with 
well understood bounds on the disease parameters. For the base interaction layer, we 
chose Vermont because of its relatively small size, well defined geography, and 
characteristics of the state that restrict movement, as we explain below.   
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2.1   Methodology 

In our approach, we generate the control data set and control scenario in four steps: 

1) A “hidden” stochastic SEIR model is used to generate the control data set. 
This target data set logged as a comma separated variable (csv) file and 
treated as “real” disease data for the test. 

2) The STEM Analysis Perspective, the component of the STEM disease 
modeling system that analyzes existing data sets, is then used to estimate the 
disease model parameters that most closely “fit” the “real data” generated in 
step 1. The unbiased estimation procedure in STEM is free of assumptions 
about the underlying spatial graph of interactions. It only averages over local 
epidemiological data. The following numerical experiment is also a test of 
the accuracy of this unbiased estimation procedure. 

3) Using the parameter estimations in Step 2, several alternative scenarios for 
Vermont are composed using possible relationship graphs connecting the 
administrative level 3 (town) nodes. 

4) Finally, the results of these alternative scenarios are compared to the control 
data by RMS difference and by a dynamical “Lyapunov” analysis in S-I 
space [13]. 

2.2   Basic Disease Model 

The basic disease model identifies four states. A person can be susceptible (S), 
exposed (E), infectious (I), or recovered (R). Known as the SEIR model, it is defined 
by four equations [1-3]: 

 
dS

dt
= −βSI + αR  

dE

dt
= βSI −εE

dI

dt
= εE − γR

dR

dt
= γR −αR

 

(1a)
 

(1b)
 
 

(1c)
 

(1d)
 

 
Here β  is the infection rate, α  is the recovery rate, ε is the incubation rate, and γ  is 
the immunity loss rate. Here we are simply using the most basic of compartment 
models for illustration purposes only. More sophisticated nonlinear models have been 
developed that capture richer dynamic behavior than the simple SEIR model [12]. 

A SEIR compartmental model assumes that everyone in the population is in one of 
the four states mentioned above. People in the susceptible state can contract the 
disease from other people who are infectious, while people in the exposed state have 
already contracted the disease but are not yet infectious. People in the recovered state 
are temporarily immune to the disease. For the purposes of this study both the birth 
rates and death rates are taken to be zero. 
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2.3   The Graph of Human Transportation in Vermont 

Using publicly available geographical information system (GIS) data included in 
STEM [6], we compose our control scenario as a graph defining all administrative 
level 3 (town or zip code) regions of Vermont including human population and region  
areas. We use both the nearest-neighbor (adjacency) relationships for these regions 
and a graph of connections by roads. The graph defining the road network in Vermont 
is constrained by the Green Mountains (a sub-range of the Appalachian Mountains) 
that limit east-west road travel, increasing the likelihood that a disease will spread 
along major transportation corridors than to an adjacent town on the opposite side of 
the mountain range [14]. The edges in the road transportation graph that links towns 
together represent Interstate Highways, US Routes, and Vermont State Highways. 

These edges must be weighted appropriately in order to capture the volume of 
traffic on the roads. This involves counting the number of roads crossing a particular 
border (connecting a pair of location nodes) and weighting each road connection by 
each class or capacity to carry traffic. Using annual average daily traffic data for a 
variety of locations, we calculate that, on average, Interstate Highways and US Routes 
are 3.2 times and 1.6 times more traveled than Vermont State Highways, respectively 
[15]. Thus, the weight of Interstate Highways, US Routes, and Vermont State 
Highways are 3.2, 1.6, and 1, respectively. The label defining total “relative” weight 
of an edge connecting nodes i and j is then given by: 

 
Wedge(i,j) = 3.5Ninterstate(i,j) + 1.7NUShwy(i,j) + 1.0NVTRoute(i,j)           (2) 

 
If there are multiple connecting roads, the weights of the roads are summed to 

determine the total weight of that edge. For example, if two towns were connected by 
an Interstate Highway and a Vermont State Highway, the weight of this road would 
be 4.2. This un-normalized label defines the weight of the connection (in road edge 
units). It reflects the relative road capacity between sites i,j relative to other sites. The 
edge weight itself is then multiplied by an overall scaling factor that defined the net 
flux of people across that edge in a time period of one day as shown in Table 1.  

 
Table 1. Target Model for Influenza in Vermont 

Immunity Loss Rate (alpha) 0.003 
Incubation Rate (epsilon) 0.2 
Recovery Rate (gamma) 0.1 
Transmission Coefficient (beta) 4.0 
% Traveling per road edge unit  0.02 
% Traveling per day by nearest neighbor edges (independent or 
roads) 

0.001 

 
Using the disease parameters in Table 1, a control data set of influenza data was 

generated for Vermont with a time interval of one day over a 405 day period. The 
simulation was “seeded” with one infectious individual located in Addison, Vermont, 
on day 1. The screenshot in Figure 1 shows the state of the resulting epidemic after 60 
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days. Since the control simulation (deliberately) used a spatial transmission dominated 
by roads, the state after the first 60 days clearly shows the expected anisotropic spread 
as the disease follows the most traveled paths for human transportation. 

 

Fig. 1. Influenza in Vermont after 60 days with travel by both roads and nearest neighbors 

3   Testing Accuracy and Value 

If we then treat the control data set as “real” data of some epidemic, it is desirable to 
estimate the basic disease parameters or coefficients that would “best fit” the control 
data [16]. If accurate estimates can be obtained, one might expect to be able to model 
the time evolution of the epidemic. To accomplish this, we use the Parameter Estimation 
tools available in the STEM Analysis Perspective. Given any data set, this tool attempts 
to compute by a method of least squared fitting the basic parameter values for a standard 
SEIR model (STEM also provides SIR and or SI models; these are not tested here). The 
estimation enforces no underlying graph model for connections spatial regions in a data 
set; rather it assumes no connections. Estimations are made only for locations where an 
epidemic actually occurs. Given our foreknowledge of the correct answer (Table 1), the 
following numerical experiment is a first test for the accuracy and potential value of this 
approach to parameter estimation.  

3.1   STEM Parameter Estimation 

The four equations with four parameters that define the standard SEIR model are 
defined by equations 1a-d shown in Section 2.2. When rearranged by simple algebra, 
the four equations may be transformed as follows:  
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All four of the above equations are in the form y = mx + b, where:  
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(4a) 

(4b) 

(4c) 

(4d) 

Using the method of least squares, we can fit all four equations to a line and obtain 
both the slope (m) and intercept (b) from each equation. The slopes and intercepts in 
each equation correspond to disease parameters in the model equations. 

The aim of this method is to estimate the parameters with the highest confidence 
level. That is, in addition to the standard deviations being the smallest, the equations 
are fit self-consistently and in the region for which they are most valid. To minimize 
the noise which arises from taking numeric derivatives of the discrete data, we form 
logarithmic derivatives for equations 4a-d. 

Because of the divisors in the equations, the fits must be done in regions in which 
S, E, I, and R are all nonzero. Of course, there are variants of these equations which 
hold when one or more of these variables are equal to zero. An expanded version of 
the model, for future work, could utilize fitting in the regions of zero value as well. 
However, we find that these are relatively small regions of the data.  

Moreover, we find that, although linear throughout the range of data, the equations 
gave regions of both positive and negative values for several of the parameters. We 
restricted our fit to the regions with positive values of the model parameters. This still 
allowed a significant range of times for the fitting. 

The equations above give two independent estimated values for each parameter. To 
give equal weighting to all four equations, we averaged the two values for each 
parameter and calculated the standard deviations, as shown in Table 2.   

 
Table 2. Parameter Estimation Results 

 
Parameter Estimated Value 

Immunity Loss Rate (alpha) 0.001±0.005 
Incubation Rate (epsilon) 0.219±0.005 
Recovery Rate (gamma) 0.099±0.006 
Transmission Coefficient (beta) 4.45±1.03 

3.2   Candidate Models for Comparison 

The values shown in Table 2 do not in themselves define an accurate model for the 
control scenario. The disease model itself must be constructed on top of a graph 
representing the spatial vectors that allow the disease to spread. Thus, we put forward 
three candidate models for the control scenario, using the estimated disease parameter 
values in each. In the first model we allow only disease transmission by roads with a 
weighting of 0.02 per road edge. In the second model we leave out the road edges  
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completely and only consider a graph with nearest neighbor connectivity and a flux of 
5% of the population per nearest neighbor edges. In both cases the edges represent a 
symmetric bi-direction circulation between node edges per day (so there is no net 
population migration). Finally, in the third model we apply the same disease 
parameters using a “correct” model for transportation that includes both roads and 
nearest neighbors using the same weightings defined in the control scenario. 

4   Results and Discussion  

Figure 2 shows the state of the simulation at 60 days from the initial seed with each of 
the three transportation models defined in Table 3. These may be qualitatively 
compared with the reference scenario shown in Figure 1. To make a quantitative 
comparison we use two tools available in STEM’s Analysis Perspective. The first tool 
measures the root mean square (RMS) difference δa,b(t) between two scenarios ‘a’ and 
‘b’ at time t averaged over all locations (i). The algorithm used is: 

 

∑
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Note that each location ‘i’ is weighted by the local population Pi so more populous 
locations contribute more to the measurement. The method assumes the scenarios a,b 
each cover the same set of location {i} which is true in this case. The RMS difference  
 

Table 3. Three Models for Transportation 
 

 
Candidate Scenarios  

Fraction traveling per road 
edge unit per day 

Fraction traveling per day 
by nearest neighbor edges 
per day  

Roads Only 0.02 0.0 
Nearest Neighbors Only 0.0 0.05 
The “Correct” Graph  
including Both 

0.02 0.01 

 

 

(a) 

 

(b) 
 

(c) 
Fig. 2. Screenshots of three models scenarios at 60 days with three models of transportation (a) 
Road Transport only, (b) Nearest Neighbor Edges only, and (c) both vectors included with the 
same weights as the control 
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is evaluated only at locations that have a non-zero rate of infection at some time t. If, 
for example, a comparison is made of two scenarios involving the entire planet but the 
epidemic in question is localized to a small region (e.g., the state of Vermont), one 
only wants to compare the model to the reference over those locations where the 
epidemic actually took place. Including locations with tI ∀≡ 0 would artificially 
reduce the estimated RMS error. 

Finally we note that the comparison is made including only the S and I states. The 
algorithm compares these two disease state variables to allow for comparisons 
between different types of models. In a real epidemic scenario, one may wish to 
evaluate (for example) SI, SIR and SEIR models for the same infectious disease. 
Since the S and I states are common to all, measuring the RMS difference in this way 
allows for comparison across different types of models. In cases where only the 
infectious or perhaps change in infectious I∆ is known, RMS comparison may also 
be made based only on the I state. 

Figure 3 shows the time dependent RMS error function for each of the three 
transportation models defined in Table 3 relative to the reference. The RMS 
difference as a function of time may begin near zero as a simulation is seeded or 
started at the same state as the reference data time series. Over time, as the 
spatiotemporal evolution of the model departs from the reference scenario, the RMS 
difference will increase. If the epidemic ends in both the model and reference 
scenarios, then the RMS difference will again approach zero. Averaging this error 
function in time provides a measure to the average difference or error of the model 
scenario relative to the reference.  Figure 3 demonstrates that the integrated error is 
largest (7.5%) for the model scenario that assumed transportation of people based on 
a graph of nearest neighbor edges. A simple model using only road transportation had 
the lowest average error of 4.2%, lower even than the “correct” transportation model 
which had an average error of 4.3%. This is consistent with qualitative comparison of 
time evolution of the scenarios (comparing figures 2a-c with figure 1). Why should 
the simple road only transportation model outperform the “correct” transportation 
model when applied to the model scenario? As shown in Table 2, the estimated model 
parameters (compared with the reference in table 1) are inexact. Any disease 
parameter estimation procedures are likely to have sources of error. In this case, the 
estimation for the transmission coefficient (4.45) is high by slightly more than 10%. 
The average error measured by the RMS difference may be slightly lower in the road 
only transportation model; omitting the weak nearest neighbor connectivity used in 
the reference scenario somewhat compensates for the overestimate in the transmission 
coefficient.  

The RMS error is a useful measure of the average difference between two 
scenarios. However, if a model and reference scenario each describe an epidemic that 
begins and end in the same state (zero infectious), the RMS error will eventually fall 
to zero even in case of a “bad” model. In addition to measuring the average error, it is 
useful to look for other measures that might provide a “fingerprint” for the 
spatiotemporal dynamics of an infectious disease. Like many dynamical systems, 
infectious disease is a process of many variables. However, it is often possible to 
capture the essential dynamics by looking at just a few system variables in an 
appropriate phase space.  In its most general formalism, any dynamical system is 
defined by a fixed set of equations that govern the time dependence of the system’s  
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Fig. 3. RMS difference as a function of time between the three candidate scenarios and the 
reference Vermont data. Using the correct transportation model, the average RMS difference 
between the model and the reference is only 4.3% even with the errors in disease model 
parameters. A simple model using only roads has an average error of 4.2%. The nearest-
neighbor only transportation model has the largest average error (7.5%). 
 
state variables. The state variables at some instant in time define a point in phase 
space. A SEIR model defines a four dimensional phase space. An SI model defines a 
two dimensional space. Examining a reduced set of dimension may be thought of as 
taking slice through phase space (for example in the SI plane).  

At the state of the system changes with time, the point (S(t), I(t)) in phase space 
defines a trajectory in the SI plane. Consider an epidemic that begins with one 
infectious person and virtually the entire population susceptible at t=0,  S(0) ~ 1. The 
trajectory will begin at time zero along the S axis near 1. As the disease spreads, the 
susceptible population (S) will decrease and the infectious population (I) will 
increase. The detailed shape of the this trajectory will depend on the time it takes for 
the disease to spread to different population centers, as well as the (susceptible) 
population density function. The peaks and valleys along the trajectory in SI phase 
space proved a signature or fingerprint for an epidemic the shape of which depends on 
the disease, the disease vectors, the population distribution, etc. The mathematics of 
dynamical systems provide us with a formalism to compare trajectories in a phase 
space. Given a single set of rules (e.g., a disease model), two simulations that begin 
infinitesimally close together in phase space may evolve different in time and space. 
This separation in phase space can be measure quantitatively.  

Vector R
r

= (S(t),I(t)) defines a trajectory in SI space. The initial separation at time 
zero be defined as |

oR
r

δ |. The rate of separation of two trajectories in phase space will 

often obey the equation 

|||)(| o
t RetR

rr
δδ λ≈  
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where λ is the Lyapunov Exponent. This exponent is a characteristic of the dynamical 
system that defines the rate of separation of infinitesimally close trajectories in phase 
space.  

The STEM Analysis Perspective also provides tools to compare the trajectories 
describing the output of model scenarios with reference data sets (real data or other 
models). Figure 4a shows the trajectory in phase space for the reference scenario 
along with the three disease models based on the estimated parameters in Table 2 and 
the three models of transportation. The two models where transportation is dominated 
by road transport more accurately follow the reference trajectory (shown in black).  
The model based on nearest neighbor edges only has a clearly different trajectory 
fingerprint in phase space.  

 

 
(a) 

 
(b) 

Fig. 4. (a) The trajectories in Phase Space for the reference data (solid), and models with only 
road transport (broken), the correct transportation graph (uneven broken line), and a graph 
using nearest neighbor edges (gray). (b) The rate of separation of the three model scenarios 
from the reference scenario showing estimates for the Lyapunov exponent. 

 
In Figure 4b, we plot the natural logarithm of the distance in phase space between 

each of the three model scenarios and the reference. The initial slope over the first 30 
days on this semi-log provides a measure of the Lyapunov Exponent (λ). An accurate 
measure requires averaging over many such instances but the data in Figure 4 
demonstrates the procedure and provides a qualitative comparison of the relative 
accuracy of each of the three models.  

5   Conclusion 

In response to any severe global pandemic, scientists will of necessity look toward 
modeling as a way to forecast the progress of the disease. Technology exists to 
rapidly build many new models of infectious disease. Clearly we need tools and 
procedures to compare the accuracy of competing models before we rely on any of 
them to guide policy [16,17]. The use of a control scenario described in this paper 
illustrates how tools available today may be tested in a pandemic exercise. Only by 
testing the accuracy of our models and our tools can we develop a useful framework 
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for the future. Because infectious disease evolves in time and space as a stochastic 
dynamical system, no model will ever be completely accurate.  

5.1   Using Modeling to Test Policies   

If we can develop “good approximations” and understand the rate at which models 
lose accuracy, then, much like the 5 day forecast in weather prediction, we can use 
modeling to test policies [17,18]. A “good approximation” requires not only 
knowledge of the disease parameters themselves, but also an understanding of the 
most important disease vectors and the “denominator data” that captures the 
transmission dynamics of the disease. In this exercise we estimate the disease 
coefficients locally by assuming a particular underlying graph of spatial connections. 
We then applied these estimated coefficients to models built on different spatial 
connection graphs. In the future it may be possible, with sufficient experimental data, 
to create algorithms that not only provide estimates for disease coefficients but also 
for the dominant transportation graph.  

5.2   Directions for Future Research 

A natural extension of the current estimation algorithms would allow communication 
between neighboring geographies, using roads, nearest neighbors, or both. The 
equations then become dependent on a large number of variables, and the analysis 
correspondingly becomes more complex. They can still be transformed into linear 
equations, however, and analyzed using the approach described in this paper.  

A validated model such as the one described here could be used to confidently 
investigate and simulate a variety of infectious disease outbreaks.  The results of these 
simulations could be used by healthcare organizations, public health officials, and 
governmental policy makers to understand how a disease may spread, and to 
determine appropriate ways to deal with such an outbreak.   

This validation will require a variety of tools comparing model scenarios. Root 
mean square (RMS) differences and Phase Space Analysis can be applied to compare 
the relative accuracy of competing models and to estimate the rate at which any of 
these models lose accuracy. The same tools, applied to individual models, can also be 
used to measure the sensitivity of those models to initial conditions and, therefore, 
sensitivity to uncertainty in initial experimental data.  
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Abstract. We developed a template-driven spatial-temporal multivariate 
outbreak simulator that can generate multiple data streams of outbreak data for 
evaluating detection algorithms used in disease surveillance systems.  The 
simulator is controlled via intuitive parameters that describe features of the 
outbreak and surveillance system such as the elevated risk of disease, 
surveillance data coverage, case behavior probabilities, and the distribution of 
behavior times.  We provide examples of temporal and spatial-temporal 
outbreak simulations. Our simulator is a useful tool for evaluating of outbreak 
detection algorithms. 

Keywords: Outbreak simulation, multivariate biosurveillance data. 

1   Introduction 

Biosurveillance systems collect and automatically analyze various types of data in 
search of signs of possible disease outbreaks. For example, a system may obtain, from 
a subset of emergency departments (EDs) in a region, the daily count of the number 
of ED visits for each of several syndrome categories. The system may also obtain data 
from laboratories, pharmacies, and other data providers.  The automatic analysis of 
biosurveillance data is conducted by outbreak detection algorithms.  Researchers have 
developed numerous algorithms for detecting outbreaks, ranging from temporal 
algorithms that detect changes in single time series for a single geographic region [1], 
spatial-temporal algorithms that utilize both spatial and temporal data [2], to 
algorithms that work on multivariate data streams [3]. 

Evaluation of detection algorithms requires surveillance data from outbreak and 
non-outbreak periods. Data are often available for non-outbreak periods. However, 
due to the rarity of real outbreaks, many evaluations cannot use data from real 
outbreaks. In such situations, researchers construct semi-synthetic data by simulating 
captured outbreak cases (those captured by the surveillance system) and adding those 
cases to real non-outbreak data.  

One type of outbreak simulator consists of disease-specific simulators. For 
example, Hogan et al. [4] used a model of an aerosol anthrax release to evaluate 
detectability of anthrax outbreaks. Watkins et al. [5] have developed software for a 
geographic information system (GIS) environment for simulating spatial-temporal 
disease outbreaks. Such simulators can offer good face validity and permit 
investigation in to the role of meaningful outbreak parameters.  
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Another type consists of simulators that are not disease-specific. These simulators 
are typically defined by a template function that describes the temporal shape of the 
outbreak in surveillance data. For example, Reis et al. [6] created outbreaks in 
temporal data consisting of 20 cases per day for 7 days. Researchers can tailor the 
shape, magnitude and duration to match those of a hypothetical outbreak of interest, 
and add noise to improve realism.  Researchers have also used simple extensions of 
this approach to create outbreaks in spatial-temporal data [7]. Cassa et al. [8] 
developed the open-source AEGIS Cluster Creation Tool for simulating spatial-
temporal outbreaks that are not disease-specific.  

The above simulators all create temporally-aggregated counts, for example, daily 
counts of ED visits.  The simulation of only aggregated data can create difficulties 
when comparing algorithms that run on data that are aggregated differently, or 
algorithms that run at different frequencies. While these difficulties are surmountable 
by using the least common denominator for temporal aggregation, or by simulating 
visit times in a second simulation step, an alternative solution is to simply simulate 
visit times directly instead of simulating aggregated counts.  Zhang and Wallstrom 
adopted this approach and developed a template-driven outbreak simulator that 
generates event time data for a single data source [9].  This approach has the added 
advantage of forcing the logical separation between the simulation method and the 
aggregation routines used by surveillance systems.  

One potential limitation is shared by those existing non-disease specific outbreak 
simulators mentioned above: they only simulate outbreak data for a single data stream 
(i.e. ED respiratory visits). Many biosurveillance systems monitor multiple data 
streams, most notably ED visits for multiple syndromes [10], over-the-counter (OTC) 
sales data for multiple product categories [11], and laboratory data [12, 13]. Semi-
synthetic evaluation of algorithms that utilize multiple data streams requires outbreak 
simulations that simultaneously affect the multiple data streams.  

In this paper, we introduce a non-disease specific outbreak simulator that creates 
multivariate outbreak data.  While the simulator is largely based upon the univariate 
simulator developed in Zhang and Wallstrom, it is not a strict extension. It does, 
however, inherit many of its features such as the ability to generate purely temporal 
and spatial-temporal event time data in accordance with user-defined template 
functions. Our objective is to create a simulator of multiple series of event times that 
can be controlled intuitively through the use of template functions. We describe our 
multivariate outbreak data simulator in the context of OTC sales data for a particular 
category of products and ED visit data for a particular syndrome to illustrate the ease 
and flexibility of our simulator by generating temporal and spatial-temporal outbreaks 
datasets for both OTC sales and ED visit during the same outbreak period.  

2   Methods 

To simulate multivariate outbreak data, we develop a model that describes the effect 
of an outbreak on multiple streams of data. We begin by associating each data stream 
with a behavior.  For example, we associate a data stream of ED respiratory visits 
with the behavior of visiting an ED with a respiratory chief complaint.  Similarly, we 



 Simulation of Multivariate Spatial-Temporal Outbreak Data 157 

associate a data stream of OTC purchases of cough and cold products with the 
behavior of purchasing a cough and cold product from a pharmacy.   

A rough outline of our simulation process follows: 

Step 1: Determine the total number of outbreak cases.  This number includes those 
cases not captured by the biosurveillance system. 

Step 2: Distribute the cases geographically into regions.  Consistent with common 
terminology, we call the geographic regions tracts.  

Step 3: Determine the data streams that are affected by each case. 

Step 4: Determine the event time for each case and affected data stream. 

We first consider the purely temporal simulation of multivariate outbreak data.  We 
then proceed to discuss spatial-temporal simulation of multivariate outbreak data. 

2.1   Multivariate Purely Temporal Simulation 

We discuss here the purely temporal simulation of M data streams.  We first describe 
the inputs necessary for the simulation, and then describe how these inputs are used to 
carry-out the above simulation steps.   

Outbreak Magnitude. This parameter, denoted by C, is the total number of outbreak 
cases, including those not captured by the biosurveillance system.   

Behavior Probability Vector. The behavior probability vector is a vector of length 

2M consisting of the joint probabilities for the M  behaviors for each outbreak case.  
For example, consider the simulation of a gastrointestinal outbreak with two data 
streams: ED gastrointestinal (GI) visit data and OTC antidiarrheal sales. A joint 
probability vector (0.1, 0.25, 0.35, 0.3) means that for any outbreak case, with 
probability 0.1 the case both went to an ED with a GI chief complaint and bought an 
antidiarrheal OTC product, with probability 0.25 the case went to the emergency 
room but didn’t buy an OTC product, with probability 0.35 the case didn’t go to an 
ED but bought an OTC product and with probability 0.3 the case neither went to an 
ED nor bought an OTC product.  

Coverage Vector. The coverage vector consists of M coverage probabilities, which 
indicate the probability that a behavior is captured by the biosurveillance system in 
the outbreak region. 

Temporal Template. The temporal template is a function f that describes how the 

rate of outbreak-related events changes across time. Specifically, we define f to be a 

joint density function for a vector ( ) [ ] [ ] [ ]1 2 1 2, , , 0, 0, 0,M Mt t t t T T T′= ∈ × × ×K L  of 

event times, with one event time for each data stream.  We decompose f  into a 

product of conditional density functions: 

1 1 2 2 1 1 2 1( ) ( )* ( | )...* ( | , ,... )M M Mf t f t f t t f t t t t −= .  (1) 
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For convenience, we restrict if  (1 i M≤ ≤ ) to be a bounded (conditional) density 

function on [0, ]iT  (1 i M≤ ≤ ). 

With the above inputs, the simulation is carried out as follows: 

Step 1:  The total number of outbreak cases is given by the outbreak magnitude C.  
We note here that C may be either a fixed number, or could itself be randomly drawn 
from, say, a Poisson distribution with a fixed mean. 

Step 2:  This step is not necessary for purely temporal simulation. 

Step 3: For each case we use the behavior probability vector to determine the 
behaviors that the case engages in. For each such behavior, we then use the associated 
coverage probability to determine whether that behavior is captured by the 
biosurveillance system.   

Step 4:  For each case, Step 3 determines the collection of captured behaviors for the 
case.  We then simulate the vector of behavior event times by drawing an observation 
from the joint marginal distribution of event times for those behaviors. 

Several assumptions are critical in this simulation process.  First, we assume that 
each case is represented at most once in each data stream. Second, we assume that 
each event time is independent of whether other behaviors are engaged in and 
captures, but not necessarily independent of the times of such behaviors.  For 
example, the marginal distribution of the ED visit time does not depend on whether 
the case purchases an OTC product or whether that purchase is captured by the 
system, but the ED visit time and OTC purchase time may be correlated.  Finally, 
observe that due to this assumption, we can greatly simplify the simulation process by 
simulating the complete vector of event times for each case, and simply censoring 
those event times for behaviors not engaged in or not captured by the biosurveillance 
system. 

Example. We illustrate temporal multivariate outbreak simulation by simulating 
bivariate data consisting of one OTC data stream and one ED data stream. We specify 
a template function that is linearly increasing for the OTC event time 1t , and  
increasing non-linearly for the ED event time 2t  conditional on 1t .  Specifically, 

2
1 1

1

2 / 0
( )

0

t T t T
f t

otherwise

⎧ ≤ <
= ⎨
⎩         

( 5)T =  (2) 

and  

2
2 2 1 2 1 1 2( | ) 0.25 (2 / ) 0.75 (1/ ( )) [ ]f t t t T T t I t t T= × + × − × < < , where 

1 2[ ] 1I t t T< < = only if 2t  is greater than 1t  and 0 otherwise  
(3) 

The distribution of 2 1|t t is a mixture:  with probability 0.25, 2t  is distributed 

identically to 1t and with probability 0.75, 2 1|t t  is uniform on 1( , )t T . The mean of the 

OTC event time is 3.33 days and the mean of the ED event time is 3.96 days. Our 
intuition to use this distribution in this example is to simulate the effect that ED event 
times are often later than OTC event times, which would occur if cases tend to  
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self-treat with OTC products earlier in the course of an illness when symptoms are 
less severe, and visit an ED later in the course of an illness when symptoms are more 
severe.  

We simulate the multivariate outbreak that consists of OTC event times and ED 
event times. For each series, we set 300C = cases, the behavior vector is (0.1, 0.1, 
0.2, 0.6), and the coverage vector is set to (.70, .40) for OTC and ED respectively. 

The simulated visit times are aggregated into 12-hour-aggregated counts and 
graphed in Figure 1 (a - b).  
 

 
(a) OTC data stream 

 
(b) ED data stream 

Fig. 1. Simulated OTC (a) and ED (b) visit times using a semi-linear template function. 12-
Hour-aggregated visit times are created for each time series. 

2.2   Spatial-Temporal Multivariate Outbreak Simulation 

We now turn to spatial-temporal simulation. The inputs for the simulation are similar 
to those for the purely temporal simulation.  The main difference is that we replace 
the temporal template with a joint spatial-temporal template.  We also extend the 
definitions of the other inputs. 

Outbreak Magnitude. The outbreak magnitude C is the total number of outbreak cases 
across all tracts in the set of tracts S  over the duration of the outbreak. 
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Behavior Probability Vector. The behavior vector here has the same definition as in 
our purely temporal version. The behavior probabilities could vary across tracts, or 
one could assume that behavior rates are the same across tracts (e.g. the likelihood of 
going to an ED is the same for every zip code in the region).   

Coverage Vector. The coverage vector here has the same definition as in the temporal 
version.  Like the behavior probability vector, the coverage can be a function of space 
or could be assumed to be uniform across the region. 

Spatial-Temporal Template. The spatial-temporal template is a function f of time 

and space that describes how the rate of new cases changes across time and space. 
Specifically, we define ( , ) ( ) ( | )S Tf s t f s f t s=  to be a bounded joint probability mass 

function and probability density function over the spatial location and event times for 
each case.  We interpret ( )Sf s  as the probability that a case is assigned to tract s .  

This probability is a function of the elevated risk in tract s . Specifically, for tract s , 
let sr denote the elevated disease risk , and sn denote the population. Then 

' '
'

( )= s s
S

s s
s S

n r
f s

n r
∈
∑

 
(4) 

With the above inputs, spatial-temporal simulation is carried out as follows: 

Step 1:  The total number of outbreak cases is given by the outbreak magnitude C.   

Step 2:  Each case is assigned to a tract randomly according to the spatial template Sf . 

Step 3:  For each case we use the behavior probability vector, which may depend on 
the case’s tract, to determine the behaviors that the case engages in.  For each such 
behavior, we then use the associated coverage probability, which also may depend on 
the case’s tract, to determine whether that behavior is captured by the biosurveillance 
system.   

Step 4:  For each case, Step 3 determines the collection of captured behaviors for the 
case.  We then simulate the vector of behavior event times by drawing an observation 
from the joint marginal distribution of event times for those behaviors in that case’s 
tract. 

The assumptions listed for the purely temporal simulation remain in effect.  In 
particular, one can simplify the simulation process by sampling the full vector of 
event times in Step 2 and censoring those for behaviors not engaged in or not captured 
by the biosurveillance system.  

Example. In this example, we generate outbreak event times with a tract-dependent 
lag. Specifically, we assume that *( | ) ( )T sf t s f t l= − where sl denotes the lag in the 

data stream in tract .s  We define Sf to be a decreasing function of distance from the 

zip code 0s  = 15213 in the Pittsburgh area, with 0sr = for zip codes at least 7.4 

kilometers from 0s . We set  1200C =  cases, 3T = days, the behavior vector is (0.1, 
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0.1, 0.2, 0.6), and the coverage vector is set to (.70, .40) for OTC and ED 
respectively. 

Figure 2 (a - b) shows the aggregated number of cases in the simulated outbreak in 
each affected zip code that were captured in the OTC and ED data streams 
respectively during each day: 

 

    

    

    

             (a)   OTC visit times                               (b)   ED visit times 

Fig. 2. (a)~ (b) show the spatial-temporal OTC and ED data streams. Each sub-figure plot the 
daily aggregated counts of events in that area for each day (Top, day 1; Middle, day 2; Bottom, 
day 3). A lighter color indicates a smaller number of cases, while a darker color indicates a 
larger number of cases.  

3   Discussion 

We presented a simulator that researchers can use to generate visit times for multiple 
data streams across spatial tracts.  These visit times can be injected into baseline data 



162 M. Zhang, X. Kong, and G.L. Wallstrom 

to create semi-synthetic outbreaks that can be used to assess the sensitivity and 
timeliness of outbreak detection algorithms that utilize multivariate data.  

To simulate multivariate data, we represent the dependency between different data 
streams with a behavior vector and a joint distribution over the event times.  We also 
utilize a coverage vector to represent a critical property of a biosurveillance system.  
In particular, this enables evaluating a system with coverage probabilities that depend 
on both the data stream and the tract.   

There is another sense in which data could be considered to be multivariate.  
Suppose for each case, demographic or other patient characteristics are also observed.  
It is straightforward to extend the present method to generate this kind of data as well.  
Specifically, one could specify a distribution over a set of demographic groups.  For 
each case, the distribution could be used to determine the demographic group that the 
case belongs to.  The spatial-temporal template, behavior vector, and coverage vector, 
which could depend on the demographic group, would be used to simulate the spatial 
location of the case and the event times for the captured behaviors that the case 
engages in. 
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Yanhui Shen, Chu Jiang, and Zhe Dun 

Haidian Centers for Disease Prevention and Control of Beijing,  
100037 Beijing, China 

Abstract. Model fitting and prediction of scarlet fever in the downtown area of 
Beijing was conducted through time series analysis to describe the 
epidemiological trend. A database was built and data were fitted with Excel. 
ARIMA analysis and prediction were made with SPSS. Data from 1957 to 2001 
were used for modeling. Data from 2002 to 2004 were used to validate the 
precision of the model. The incidence of scarlet fever in the downtown area of 
Beijing since 1957 declined, although fluctuations were apparent. There were two 
epidemic periods of scarlet fever, at 6.8571 years and 4.8000 years (P<0.10). The 
incidence in 2008 was predicted as 4.707/100,000 (95% confidence level: 1.379, 
16.071; R2 =0.296). Scarlet fever in Beijing is a periodical epidemic. The data of 
scarlet fever can be analyzed by ARIMA model.  

Keywords: Scarlet fever, incidence, model. 

1   Introduction 

Scarlet fever is an air-born disease which can not be prevented by vaccination yet. As 
a class B notifiable disease, its incidence rate ranked the tenth among all notifiable 
diseases in China in 2004. 

The epidemic trend of scarlet fever in Beijing has not been systematically studied. 
Will it increase or decrease? Will there be an epidemic during the 29th Olympic 
Games in Beijing? Has it a periodical epidemic? To answer these questions, a time 
series analysis using the incidence rate of scarlet fever in the downtown area of 
Beijing since 1957 was conducted.  

2   Sources and Method 

2.1   Sources 

According to the "Law on notifiable infectious diseases prevention and control of the 
People’s People's Republic of China" and "Infectious diseases report management 
regulation.", the Municipal Health Bureau of Beijing(MHBB) has built up a 
monitoring network consisting of every hospital and village clinics and community 
healthcare centers since 1949 to collect cases of notifiable diseases on the clinical 
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diagnosis. The Ministry of Health categorized scarlet fever as a class "B" notifiable 
disease. Once a confirmed or suspected case is found in a hospital，doctor should fill 
in a report card instantly and within 12 hours send it to local district Center for 
Disease Prevention and Control (CDC) by mailing paper-based card from 1949 to 
1986 or by nationwide computerized reporting network system since 1987. District 
CDC audited data daily and transfered the data to the municipal CDC daily and to 
MHBB. To guarantee the data quality, both self-inspections of hospitals and 
supervision of health inspection institutes were employed to prevent under-reporting 
and misdiagnosis. Every day CDC checks the logical errors and late-reporting. Totally 
the report timeliness rate is 95.69%, the under-reporting rate is below 5%, duplicate-
reporting rate is 2.82%. So, the data is reliable and representative. Demographic 
information was provided by the Beijing Municipal Bureau of Public Security.    

2.2   Diagnostic Criteria 

The diagnosis of scarlet fever was based on the epidemic data (local prevalence of 
scarlet fever; contact history during incubation period with patients who have scarlet 
fever, tonsillitis, angina, tympanitis or erysipelas), symptoms and signs (fever, angina, 
strawberry-like tongue; rash, Pastia lines and a pale area around the lips one to two 
days after onset; disappearance of rash and beginning of desquamation two to five 
days after onset) and laboratory examinations. 

2.3   Statistical Analysis 

We used the EXCEL software to set up a database. We carried out Auto-Regressive 
Integrated Moving-Average (ARIMA) prediction and analysis with the SPSS 13.0. 
The data from 1957 to 2001 were used to construct a model, and the data from 2002 
to 2004 were used to test the precision of the model.  

Basic ideology of the model: A time series was defined as y(t), with t as time and 
y(t) as incidence rate of the t year. Baseline was defined as t=0, with t equals to 
current year minus 1957, (t=1, 2 …n, n=48).  

An independent variable for time was created as follows: t2=t**2, t3= t**3, 
t4=t**4, t5=t**(-1), t6=t**(-2), t7=t**(-3), t8=t**(-1/2), t9=exp(-t), t10=ln(t). Y(t) 
was split into two parts : randomized and non-randomized parts. The randomized part 
was split into another two parts, which were f(t) and w(t). The formula was expressed 
as Y(t)=f(t)+w(t)+x(t), among which, x(t) was a randomized variable. Ln(y) was set 
as dependent variable and t, (t2-t10) were set as independent variables. Linear 
regression was conducted, and then using the SPSS backward elimination method to 
select variables, the main variables were identified. Using probability theory, the peak 
value of residual spectrum density was calculated to estimate the epidemic period. 
The Fisher formula was used to test the epidemic period. A periodical regression 
variable was created and a regression equation was established. If serials were 
uncorrelated, that is, the value of Durbin-Watson (DW) was between 1.5-2.5, then the 
formula above was used to predict y(t), with x(t) as the residual variable. If the serials 
{x(t)} were correlated, on condition that the serials were steady and randomized, we 
used the ARIMA procedure to determine the x(t) model for prediction. Furthermore, 
we used the formula above to predict y(t).  
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The ARIMA procedure could be categorized into three types: 1) auto-regressive 
model, 2) moving average model, 3) auto-regressive integrated moving-average 
model (ARIMA). 

Using the ARIMA model, we predicted the incidence of a disease by identifying 
the model, estimating parameters, testing and predicting applications. We used the 
residual Box-Ljung Q statistic and significance test to inspect residual randomicity, 
and used AIC and SBC to examine goodness of fit. We compared the degree of fit 
between predicted and actual values from 2002-2004 to test the predictive precision. 

3   Results  

3.1   Long Term Trend  

Figure 1 shows that, although the incidence of scarlet fever in Beijing has flunctuated, 
it has declined overall.  
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Fig. 1. Incidence rate and predicted values of scarlet fever in downtown Beijing 

3.2   Identifying the Period Variable W(t) 

It is especially difficult to conduct statistical tests for period because period cannot be 
identified by the current SPSS or SAS softwares. So, we calculated a period  
according to the processes introduced in Statistics and Probability Theory[1] and 
Statistical Calculations and Statistical Analysis of Stationary Time Series[2]. The 
steps involved first calculating the residual spectrum density then the peak value of 
the spectrum density curve could be used as the period. Finally, we used the Fisher 
formula to conduct statistical tests for each possible period. The results indicate there 
could exist two periods 6.8571 years and 4.8000 years (p<0.10).  
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3.3   Eliminating Period Variables and Identifying Randomized Variables 

Creating period regression variables: let t11 = cos(2πt/6.8571) = cos(0.9163t), t12 = 
sincos(2πt/6.8571) = sin(0.9163t), t13 = cos(2πt/4.8000) = cos(1.3096t), t14 = sin 
(2πt/4.8000) = sin(1.3096t); ln(y) be the dependent variable, t and t2-t14 be independent 
variables, using backward elimination to conduct regressions. Among the results, t, t7, t8, 
t9, t11, t12, t13, R=0.947, D.W = 1.438 were selected.  

3.4   Model Identification 

Histogram showed the residuals were normally distributed, the residual trend 
indicated the residuals fluctuated across time, which means that the data is fit for 
ARIMA analysis. After trying time series one by one in SPSS ARIMA analysis, the 
results were p=0, d=0, q=1, indicating a MA(1) model.  

3.5   Model Estimation 

Table 1. SPSS stepwise regression equation and ARIMA parameter estimation 

Variable Regression
Coefficient

Standard
Error t P 

MA1 -0.337 0.172 -1.96 0.057 
t -0.161 0.019 -8.561 0.000 

t7 -7.396 2.931 -2.524 0.016 
t8 -10.830 2.976 -3.639 0.001 
t9 37.536 11.909 3.152 0.003 

t11 -0.221 0.139 -1.588 0.012 
t12 0.363 0.144 2.53 0.016 
t13 0.350 0.129 2.714 0.010 

Constant 10.815 1.138 9.503 0.000  

3.6   Model Diagnosis 

We employed the diagnosis of residual randomicity, inspected 16 points’ Box-Ljung 
Q statistics, all p-values were greater than 0.05. Residual serials could be considered 
as white noises. R2 of residual model was 0.296, standard error was 0.544, likelihood 
ratio was -34.445, AIC was 86.890, SBC was 103.731. Figure 1 shows that predicted 
values and actual values fit well. 

3.7   Prediction 

With the model described above, we predicted the incidence rate of scarlet fever in 
2008 to be 4.707/100,000 (95% confidence interval: 1.379, 16.071). Using the 
predicted values from 2002-2004 to test the validity resulted in actual incidence rates 
within 95% confidence intervals. 
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4   Discussion 

ARIMA is an important time series analysis model of Box-Jenkins Methods [3]. The 
time series data is a set of random variables dependent on time except for some 
occasional values. The dependence relationship or autocorrelation of those random 
variables represents the continuity of the object. Once the autocorrelation is described 
by a statistic model, future values can be predicted by current and past values. Based 
on autocorrelation analysis, ARIMA can calculate a series of autocorrelation 
coefficients and partial autocorrelation coefficients. It is appropriate to study the long 
term trend of communicable diseases using ARIMA since it takes trend, season and 
random effects into account at the same time and is more reliable. 

Time series model is easy to be constructed and understood. Under the condition of 
adequate data, it possesses highly predictive precision. However, there are also some 
deficiencies: time series model predicts the future value by analyzing the 
previous incidences of scarlet fever, by only considering the historical data without 
considering any other influencing factors (such as the research and development of 
antibiotics and antibiotics abuse). In fact, the disease incidence is influenced by 
multiple factors. Therefore, there will occur obvious time delay between the 
predicting result and the actual result when the incidence rate line has sharp changes.  

Studies have shown that scarlet fever may occur regularly, but there is limited 
consensus. Tao found scarlet fever in Shandong Province was a periodical epidemic 
with the period of six to eight years by Periodogram Method [4]. Using phase space 
technique in chaotic dynamics, Wang carried out energy spectrum analysis and chaos 
analysis on the monthly incidence data of scarlet fever, epidemic encephalitis, 
hepatitis, typhoid etc. in Benxi City from 1955 to 1996 and found scarlet fever was a 
periodical epidemic and non-chaotic [5]. Based on probability theory and the energy 
spectrum of residual error and tested with Fisher Formula, this study revealed there 
were two periods of scarlet fever occurrence. The major cycle is 6.9 years and the 
minor cycle is 4.8 years. The curve peak that was calculated by the model was almost 
in accord with the actual value. 
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Abstract. Despite established links between climate and infectious disease ac-
tivity, few biosurveillance systems use climatic data to forecast epidemics.  The 
El Niño/Southern Oscillation (ENSO) affects weather worldwide and in East 
Africa is associated with flooding and Rift Valley fever, a mosquito-borne viral 
disease of economically important livestock and humans.  Following a regional 
ENSO-associated outbreak in 1997-1998, several agencies created a system to 
forecast RVF using satellite-based monitoring of ENSO and other climatic phe-
nomena.  The system generated 5 alerts since 2005.  Following 3, in South Afri-
ca (2008), Sudan (2007), and East Africa (2006), RVF occurred in high-risk 
areas (no other RVF outbreaks were reported in monitored areas).  Alerts for the 
Arabian Peninsula (2005) and Sudan (2005) were not followed by RVF reports, 
though the latter preceded a large Yellow Fever epidemic.  Future directions for 
the system include decision analysis to guide public health interventions and ex-
tension to other climate-associated risks.   

Keywords: Biosurveillance, Remote Sensing, Forecasting, Modeling. 

1   Introduction 

Despite many known links between climate and infectious disease activity, there are 
few operational biosurveillance systems that use climatic or related environmental 
data to forecast infectious disease epidemics [1].  Such systems could provide lead 
time for public health preparations, such as enhanced surveillance, risk communica-
tions, or measures to avert or lessen disease activity.  Their potential benefit likely 
will grow, as global climate change is expected to include more frequent and severe 
extreme weather events [2], which may facilitate epidemics. 

The El Niño/Southern Oscillation (ENSO), an irregular but natural feature of the 
global climate system, results from interactions between the oceans and the atmos-
phere across the Indo-Pacific region and affects the weather around the world. In the 
warm, or El Niño, phase of the cycle, sea surface temperatures are warmer than usual 
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in the eastern-central equatorial Pacific Ocean.  El Niño sometimes is followed by a 
cool, or La Niña, phase with colder-than-usual temperatures in the eastern-central 
equatorial Pacific. The warm and cool phases cycle over irregular intervals of several 
years but have characteristic effects on precipitation and temperature throughout 
much of the tropics.   

El Niño is associated with increased risk of some infectious diseases [3].  For ex-
ample, in East Africa, El Niño is associated with flooding and Rift Valley fever [4], a 
mosquito-borne viral disease that primarily affects economically important livestock, 
with humans infected incidentally by the mosquito vectors or by handling or consum-
ing infected animal products.  Outbreaks begin near natural depressions (“dambos”) 
that harbor Aedes mosquito eggs infected directly by the parent during development. 
The eggs hatch with flooding, producing an initial wave of vectors; other competent 
vectors emerge over subsequent weeks [5] and propagate the outbreak. The largest 
recorded RVF outbreak, in 1997-1998, coincided with a strong El Niño. There were 
an estimated 89,000 human infections and hundreds of deaths in northeastern Kenya 
and southern Somalia [6].  

Following the 1997-1998 outbreak, scientists at the US National Aeronautics and 
Space Administration Goddard Space Flight Center (NASA-GSFC) and the Depart-
ment of Defense-Global Emerging Infections Surveillance and Response System 
(DOD-GEIS) initiated a partnership to forecast conditions favorable for RVF activity 
in Africa by monitoring ENSO and other climatic phenomena.  Here, we assess the 
outcomes of major system alerts since 2005. 

2   Methods 

The RVF forecasting system uses satellite data from NASA and National Oceano-
graphic and Atmospheric Administration (NOAA) climate and environmental obser-
vation programs to provide predictions of areas at elevated.  The primary data are sea 
surface temperature (SST), rainfall, outgoing longwave radiation (OLR; which is 
correlated with cloud cover and rainfall), and Normalized Difference Vegetation 
Index (NDVI), which ranges from -1 to 1, with higher values indicating more dense 
green vegetation.  NDVI is correlated with rainfall but integrates effects of other cli-
matic parameters, responds most to sustained rather than intermittent rains, and is 
available globally since 1981, while ground-based rain gauge coverage is limited in 
Africa.  SST, rainfall, OLR, and NDVI data are transformed to anomalies, or devia-
tions from a long-term month-specific mean, to account for seasonal variability.  

SST elevation in the equatorial eastern Pacific Ocean is well-known as an early El 
Niño indicator, and may precede heavy rainfall in East Africa by several months, 
while the other measures provide more proximal indications of conditions favorable 
for RVF.  High-resolution (1 km) risk mapping is achieved using NDVI anomalies.  
Areas at elevated risk during month t satisfy: 

 

NDVIt-i ≥ 0.025, i = 0, 1, 2 
                                    

                                          
∑ ே஽௏ூ೟ష೔మ೔సబ ଷ ൐ 0.1 

(1)

(2)
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where NDVIt is the NDVI anomaly at month t.  The first requirement is for 3 con-
secutive months with NDVI anomalies above the range of typical variation in desert 
areas, reflecting sustained rainfall; while the second is for an average anomaly over 
the 3-month window large enough to indicate heavy rainfall [7]. 

Updated forecasts are available monthly or more frequently if appropriate, on the 
DOD-GEIS website (www.geis.fhp.osd.mil/).  Forecasts and alerts also are communi-
cated to public health agencies that can act on them in at-risk areas.  Important part-
ners in responding to forecasts and alerts include the World Health Organization 
(WHO), Food and Agriculture Organization of the United Nations (FAO), the US 
Centers for Disease Control and Prevention (CDC)’s International Emerging Infec-
tions Program (IEIP) in Kenya, and two members of the DOD-GEIS network: the US 
Army Medical Research Unit-Kenya (USAMRU-K) in Nairobi and the US Naval 
Medical Research Unit-3 (NAMRU-3) in Cairo. 

We defined system alerts as ones in which off-cycle (i.e. not regular monthly) 
warnings of RVF activity were issued to partner public health organizations.  We 
assessed the accuracy of the predictions by searching reports from WHO and the 
World Organization for Animal Health corresponding to the countries where RVF 
activity was predicted.  Successful predictions were ones in which RVF activity was 
reported to have occurred in an area while the area was flagged as high risk. 

3   Results 

RVF activity was reported in high risk areas following 3 of 5 system alerts (Table).   

Table. RVF alerts and outcomes 

Country or region      Outcome 
South Africa (2008) RVF in risk area (livestock, Jan-Mar 08) 
Sudan (2007) RVF in risk area (698 cases, 222 deaths, Sep 07-Jan 08) 
East Africa (2006) RVF in risk area (922 cases, 218 deaths, Dec 06-May 07) 
Arabian Peninsula (2005) No RVF
Sudan (2005) No RVF (Yellow Fever epidemic: 565 cases, 143 deaths) 

 

3.1   Description of a Successful Prediction: East Africa, 2006-7   

In September 2006, the RVF forecasting system identified indications of an impend-
ing El Niño episode, with SSTs anomalously elevated in the central-eastern Pacific 
ocean (+2ºC) and the western Indian ocean (+1ºC).  These conditions enhanced preci-
pitation over these areas and the Horn of Africa through November.  Rainfall in-
creased through December, with vegetation response and conditions favorable for 
RVF activity in large areas of northeastern Kenya and nearby areas in Somalia and 
Ethiopia, as well as in southern Kenya and northern Tanzania. 

 The RVF forecasting system released a series of epidemic warnings based on these 
observations.  In September 2006, it issued a global, regional-scale forecast covering 
late 2006-early 2007 for possible El Niño-linked outbreaks, including RVF in East 
Africa, to the DOD-GEIS network (these forecasts were published online in December 
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[8]).  As rainfall increased in the Horn of Africa, the FAO Emergency Prevention 
System for Transboundary Animal Diseases issued an RVF alert for the Horn in No-
vember, identifying areas flagged as conducive to RVF activity [9].  WHO transmit-
ted alerts to the countries at risk for RVF activity and called for enhanced surveillance 
and community awareness. 

 USAMRU-K, in coordination with Kenya Medical Research Institute (KEMRI) 
and the CDC IEIP-Kenya, deployed a field team in early December to assess high-
risk areas in the Garissa district of northeastern Kenya (which was experiencing se-
vere flooding) (the risk analysis at that time is shown in Fig. 1). 

 

Fig. 1. RVF risk map for the Horn of Africa, December 2006.  Dark shading indicates elevated 
RVF risk based on NDVI criteria (Eq. 1 and Eq. 2); light shading indicates areas to which the 
risk assessment is applied, based on ecological considerations [7]. 

USAMRU-K tested mosquitoes collected by the team in Garissa and from estab-
lished sites in other areas, identifying RVF virus-infected mosquitoes from Garissa.  
The field team also investigated local reports of possible animal RVF cases and tra-
veled with Ministry of Health staff to hospitals that recently had admitted patients 
with suspected RVF, obtaining specimens for testing at KEMRI. 

On December 21, KEMRI confirmed RVF virus infection in specimens taken from 
several patients in the Garissa district [10].  The Kenya Ministry of Health initiated a 
response with international partners, including WHO, CDC, USAMRU-K, NAMRU-
3, and the US Department of Agriculture. An intensive social mobilization campaign 
began in northeastern Kenya in late December, along with a locally enforced ban  
on animal slaughtering over most of Eastern and North Eastern Provinces (animal 
vaccination began in January, but by then the epidemic was waning). Frequent, high-
spatial-resolution risk assessment updates were provided to facilitate targeted surveil-
lance during the epidemic response.   

Between November 30, 2006, retrospectively identified as the date of onset for the 
index case, and March 9, 2007, when the last case was identified, 684 cases with 155 
deaths were reported in Kenya. North Eastern province, which includes the Garissa 
district, reported the most cases of affected provinces (N=333). Smaller RVF epidem-
ics in Somalia and Tanzania followed the Kenya outbreaks.  
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3.2   Description of Two Unsuccessful Predictions   

Two other RVF alerts did not precede RVF activity.  Risk assessment expanded 
beyond East Africa to include the Arabian Peninsula following RVF outbreaks in 
Yemen [11] and Saudi Arabia [12] in 2000-01, the first outside Africa.  These out-
breaks occurred in Red Sea coastal plains that flooded following heavy rains in near-
by highlands.  In April 2005, positive NDVI and rainfall anomalies in the highlands 
exceeded those preceding the 2000-01 epidemic.  The subsequent RVF alert [13] also 
considered the identification of RVF virus during routine sheep surveillance in west-
ern Saudi Arabia in 2004 [14], increasing the chance that facilitating environmental 
conditions could lead to larger-scale RVF activity.  However, no RVF activity was 
reported following this alert. 

Another unsuccessful RVF prediction, for Sudan in 2005, was followed by a large-
scale Yellow Fever epidemic in areas flagged as high risk for RVF [15] (Yellow Fev-
er, like RVF, is a mosquito-borne viral disease). 

4   Discussion 

The RVF forecasting system accurately predicted RVF activity in 3 of 5 alerts since 
2005 (there were no other RVF outbreaks reported in areas covered by the system 
during this time).  For the Arabian Peninsula, where RVF activity was incorrectly 
predicted in 2005, the risk model, which is based on experience in Kenya, may re-
quire adaptation to account for different vector ecology, human behavior, or other 
factors.  The Yellow Fever epidemic that affected areas of Sudan flagged as high risk 
in 2005 may have been related to RVF-facilitating conditions, as Yellow Fever also is 
transmitted by mosquitoes whose populations increase following flooding. 

 We are assessing the costs and benefits of actions that could be taken in response 
to RVF predictions.  While the early warning of the 2006-7 East Africa epidemic lead 
to enhanced mosquito surveillance and active human surveillance, a lead time of 4-6 
months would, in theory, allow for large-scale livestock vaccination and mosquito 
abatement, which might mitigate or avert an epidemic.  Decision analysis may guide 
consideration of these interventions.  

The future of environmental biosurveillance for epidemics prediction is promising. 
WHO has recommended development of climate-based predictive models for cholera, 
malaria, and several other infectious diseases [1].  Many countries have or are devel-
oping early warning systems for natural hazards [16], which may promote epidemics. 
Integration of epidemic prediction with such related efforts could speed the develop-
ment of epidemic prediction systems and facilitate more comprehensive risk commu-
nication to communities at risk for extreme weather events.  

Disclaimer 

The views expressed here are those of the authors, and are not to be construed as the 
official views of the US Government agencies for which the authors work. 
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Abstract. Studying relationships between environmental factors and infectious 
diseases is an important topic in public health research. The existing studies 
have been focused on temporal correlations among environmental risks and in-
fectious disease outbreaks. In this paper, we advocate the importance of spatial 
data analysis in infectious disease-related environmental analysis. Using data 
from the Beijing CDC, we have conducted spatial regression analysis to study 
correlation between Measles occurrences and the following environmental fac-
tors: population density and proximities to railways, roads, and water systems. 
We report some preliminary findings concerning significant spatial autocorrela-
tion identified from our analysis.  

Keywords: Environmental analysis, infectious disease informatics, spatial  
regression. 

1   Introduction 

The public health community has accumulated significant knowledge about how 
various infectious diseases emerge and spread. However, studies about the impact of 
environmental factors on infectious disease emergence and spreading remain sketchy. 
It has been well-argued that environmental factors such as temperature, humidity, 
proximity to water body, may have compounded impact on infectious disease trans-
mission. But detailed models studying such kind of impact are yet to developed and 
evaluated due to a number of reasons such as the complex nature of the interaction 
between the environment and disease transmission, lack of comprehensive unbiased 
datasets, and lack of appropriate analysis tools or informatics environments.   

The existing studies have started to focus on temporal correlations among envi-
ronmental risks and infectious disease outbreaks. We argue that it is critical to add the 
spatial dimension in these studies. In this paper, we report a research effort aiming to 
analyze in a spatial-temporal context correlation between several environmental fac-
tors with Measles outbreaks in Beijing. This analysis is based on spatial regression, 
which has been a popular statistical tool in infectious disease informatics practice but 
has not yet been widely applied to study the impact of environment on infectious 
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diseases. As powerful software packages such as ArcGIS and GeoDA [1] are being 
increasingly adopted and environmental data samples are being collected more easily 
with GPS-enabled devices, we expect to see increasing interest in this type of spatial 
and spatial-temporal analysis framework. In Section 2, we briefly survey related work 
on environmental health risk analysis. The spatial regression analysis using the Bei-
jing Measles dataset is presented in Section 3. We conclude in Section 4 with a sum-
mary and a brief discussion of future research.   

2   Related Work 

A few previous studies have aimed to identify correlation or association between one 
or a set of infectious diseases and certain environmental factors. We sample below 
four research topics. 1) Many respiratory diseases can be significantly impacted by 
climate, bearing obvious seasonal characteristics [2-5]. 2) Highly intensive human 
movement, typically associated with dense railway and road networks, has been 
shown to have significant impact on disease spreading [5]. 3) With an increasing 
population, the chances of stable transmission cycles between infected and susceptible 
persons are higher [6, 7]. 4) Vegetation coverage can reflect an area's environmental 
conditions, such as air quality [8].  

Most existing work has focused on detecting temporal correlations between envi-
ronmental factors and infectious disease cases. For instance, Wavelet coherency 
analysis and least squares regression analysis were used to identify statistical 
correlations between disease occurrences and climatic indices [2, 3]. However, these 
methods lack the ability to identify environmental factors potentially correlated with 
certain infectious diseases in a spatial context. 

3   Measles and Environmental Factors: A Spatial Regression 
Analysis 

While spatial data analysis has received increasing attention in many fields, including 
epidemiological studies, it remains underutilized in environmental analysis in the 
context of infectious disease informatics. One key reason lies with the difficulty of 
accessing environmental data and quantifying certain environmental factors. With 
accelerated adoption of technologies such as GIS, GPS, and remote sensing, environ-
mental data are becoming available in a finer geographical granularity and it is very 
likely that environmental analysis in the public health context will become routine 
and lead to real-time actionable findings. 

Our reported study is focused on a spatial regression analysis. In general, spatial re-
gression first quantifies the spatial pattern through a pre-specified neighborhood structure 
and then examines relations between the attributes of interest and potential explanatory 
variables that can account for the observed spatial pattern. Spatial autocorrelation is 
automatically captured by this kind of analysis. In our work, we apply the spatial lag 
model to study the relationship between five selected spatial-geographical environmental 
factors and the Measles incidence rate in Beijing. In a spatial lag model, spatial autocor-
relation is modeled by a linear relation between the response vector (y) and the associated 
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spatially lagged vector (Wy). In particular, the model can be formulated as y = ρWy + Xβ 
+ ε, where ε is the vector of error terms that are independent but not necessarily identi-
cally distributed. The response vector y denotes the disease incidence rates at all given 
regions (e.g., streets). W is a spatial weighing matrix, modeling the spatial structure for 
each location. There are a variety of ways of specifying these weights in this matrix. For 
example, a matrix with elements taking value either 0 or 1 can be used to indicate 
whether two locations are neighbors (wij = 1 if locations i and j are adjacent, and zero 
otherwise). Distances between locations or lengths of the shared borders can be captured 
as weights as well [9]. X denotes the vector of explanatory variables. In our analysis, X 
consists of five components:  

 

x1:  population density at street level 
x2:  proximity to railways 
x3:  proximity to roads 

x4:  proximity to line water systems 
x5:  proximity to polygon water  
       systems 

3.1   Data Collection and Preparation 

The Measles dataset covering daily case reporting of Measles in 2005 from 18 admin-
istrative districts in Beijing was made available by the Beijing Centers for Diseases 
Control and Prevention. Each data record contains information including patient iden-
tification, home address, and hospital visit date, among others. 

The environmental data using in our study cover all 18 administrative districts in 
Beijing and provide information on roads, railways, line water systems, and polygon 
surface water systems. Most of the data were obtained from the National 1:250000 
terrain databases and are in the ArcGIS Shape file format. An additional dataset used 
in our study provides information concerning human population density at the street 
level, acquired from the database of China Population by Township [10]. The geo-
coded and digitalized information about streets, districts, and the Beijing municipal 
administrative boundaries were obtained from the GIS database from the Institute of 
Geographic Science and Natural Resources Research. The streets defined the spatial 
grids used to map the disease cases in our study.  

 

Fig. 1. Proximity from a point location to spatial objects of arbitrary shape 

We hypothesize that proximity to possible sources of risks has a proportional effect 
on infectious disease case occurring. Values of the proximity variables are computed 
as the shortest distance from a location to railways, roads and water systems at  
the street level. ArcInfo’s secondary development components, Arc Objects, provide  
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a) Measles incidence rates in Beijing 
in 2005 (above) 
 
 
 
c) Predictions from the ordinary 
regression model (right) 

b) Predictions from the spatial regression 
model (above) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Measles disease incidence rates 

the corresponding programming interface to compute these shortest distances. Fig. 1 
illustrates the shortest distance between a point and different spatial shapes of the 
spatial objects of interest. For instance, the proximity between a point and a polygon 
water system is the shortest distance between this point and any point on the polygon.  

3.2   Results and Discussions 

The resulting model generated by the spatial lag model is shown in Table 1.  
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Table 1. The model created by spatial lag model 

 Spatial Regression  
R2 0.483 (α=0.05) 
Result y = 0.881 W y + 0.668 − 80.601 x1 − 0.000052 x2 + 0.00045 x3 +   

0.00033  x4 + 0.000014x5    
x1,  W: significant 

 
This spatial regression achieved the R2 measure at 0.48, indicating significant 

explanatory power with the spatial auto-regressive effect. Figure 2 (a) shows Year 
2005 Measles incidence rates in 18 administrative districts in Beijing. The spatial 
grids represent administrative street divisions. Figure 2 (b) shows the predictions by 
the spatial regression model presented above. Figure 2 (c) shows the predictions by a 
regular linear regression model (y = Xβ + ε; results: y = 5.94 – 114.29 x1 – 0.00024 x2 
– 0.0014 x3 + 0.000029 x4 – 0.00028 x5, with R2 = 0.067). This regular linear regres-
sion model is included as a benchmark to evaluate the performance of the spatial 
regression model.  

We observe that in the spatial regression model, x1 and W are significantly 
correlated with Measles incidence rates. According to the model, population density 
x1 is negatively correlated with Measles incidence rates. This seems counter-intuitive; 
however, we notice that streets with higher population density are more likely to be 
residential areas, typically occupied by high-rise apartments. The streets with lower 
population density are typically commercial centers, business offices, or parks, where 
intensity of people interaction can be much higher than in residential areas. The exis-
tence of significant spatial autocorrelation can be explained by the fact that people 
living in the neighboring streets have higher chance to interact and get infected by 
infected patients.   

 

Fig. 3. Moran’s I for the residuals of both the ordinary linear regression model and the spatial 
regression model. a) Ordinary regression: Moran’s I = 0.5057; b) Spatial regression: Moran’s I 
= -0.1625. 
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Moran’s I is a weighted correlation coefficient used to test for global spatial auto-
correlation in spatial data. When incidence rates in nearby areas are similar, Moran’s I 
will be large and positive. When rates are dissimilar, Moran’s I will be negative [11, 
12]. Figure 3 indicates a strong spatial auto-correlation effect in the residual of the 
ordinary linear model, whereas Moran’s I is significantly smaller in the residual of the 
spatial regression model. This indicates the effectiveness of the spatial regression 
model. 

The existence of spatial autocorrelation might be due to frequent direct physical 
contacts among people who live closer. In the case of Measles, direct contact with  
the infected can lead to infection with high probability [13]. Indirect transmission is 
very rare.  

4   Concluding Remarks 

Effective infectious disease prevention and control requires an in-depth understanding 
of the disease transmission mechanisms. There is a critical need to uncover relations 
between environmental risk factors and disease cases, and study these relations from 
the point of view of data-driven research in both temporal and spatial dimensions. 

This paper presents a case study of applying spatial regression analysis to analyze 
the relationship between Measles cases and several environmental factors using the 
2005 Beijing dataset. Significant positive spatial autocorrelation and the negative im-
pact of population density are identified. In our current research, we are analyzing 
datasets covering other infectious diseases and a more complete set of environmental 
factors, including climate, and social economic factors. For instance, in the case of 
Bacillary Dysentery, we have found that the following spatial factors are significant: 
spatial autocorrelation, proximity to railways, and proximity to polygon water sources. 
Our future work will also explore the predictive power of these spatial models. 
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